L(s) = 1 | + (1.55 + 2.14i)2-s + (2.38 − 1.82i)3-s + (−0.927 + 2.85i)4-s + (−1.66 + 2.28i)5-s + (7.60 + 2.25i)6-s + (2.31 − 7.11i)7-s + (2.51 − 0.817i)8-s + (2.33 − 8.69i)9-s − 7.48·10-s + (2.99 + 8.48i)12-s + (18.1 − 13.1i)13-s + (18.8 − 6.11i)14-s + (0.217 + 8.48i)15-s + (15.3 + 11.1i)16-s + (−12.4 + 17.1i)17-s + (22.2 − 8.51i)18-s + ⋯ |
L(s) = 1 | + (0.777 + 1.07i)2-s + (0.793 − 0.608i)3-s + (−0.231 + 0.713i)4-s + (−0.332 + 0.457i)5-s + (1.26 + 0.376i)6-s + (0.330 − 1.01i)7-s + (0.314 − 0.102i)8-s + (0.259 − 0.965i)9-s − 0.748·10-s + (0.249 + 0.707i)12-s + (1.39 − 1.01i)13-s + (1.34 − 0.437i)14-s + (0.0145 + 0.565i)15-s + (0.960 + 0.697i)16-s + (−0.731 + 1.00i)17-s + (1.23 − 0.472i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 - 0.398i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.917 - 0.398i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.34593 + 0.694591i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.34593 + 0.694591i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.38 + 1.82i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-1.55 - 2.14i)T + (-1.23 + 3.80i)T^{2} \) |
| 5 | \( 1 + (1.66 - 2.28i)T + (-7.72 - 23.7i)T^{2} \) |
| 7 | \( 1 + (-2.31 + 7.11i)T + (-39.6 - 28.8i)T^{2} \) |
| 13 | \( 1 + (-18.1 + 13.1i)T + (52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (12.4 - 17.1i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (4.62 + 14.2i)T + (-292. + 212. i)T^{2} \) |
| 23 | \( 1 - 31.1iT - 529T^{2} \) |
| 29 | \( 1 + (20.1 + 6.54i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (24.2 - 17.6i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (3.09 - 9.51i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (-40.2 + 13.0i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 - 14.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-34.9 + 11.3i)T + (1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (24.9 + 34.3i)T + (-868. + 2.67e3i)T^{2} \) |
| 59 | \( 1 + (32.2 + 10.4i)T + (2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (78.7 + 57.1i)T + (1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 42T + 4.48e3T^{2} \) |
| 71 | \( 1 + (38.2 - 52.6i)T + (-1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (23.1 - 71.1i)T + (-4.31e3 - 3.13e3i)T^{2} \) |
| 79 | \( 1 + (-18.1 + 13.1i)T + (1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (12.4 - 17.1i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 - 62.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (59.8 - 43.4i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12561965448210741796671142041, −10.59931327297450067445824068891, −9.049166931069390755648070216012, −7.975454027027746917532521599306, −7.42695460956623528131441972123, −6.62073262731305323494774313015, −5.65192710887742025045582132211, −4.09919625820517563134672758252, −3.43933774121234987114915001757, −1.37999127503482149318345713318,
1.82146005612344603100205060608, 2.80427647259149426833008022753, 4.10134330269141871175898437530, 4.60166310431899429505184192890, 5.91792260499906788711979164540, 7.65478776270966473292203368551, 8.761359107377842652364096512502, 9.153279101696372222343362303023, 10.58026742094662203989512809350, 11.20651851640246457684504109933