L(s) = 1 | + (0.974 + 1.34i)2-s + (2.52 + 1.61i)3-s + (0.386 − 1.18i)4-s + (0.410 − 0.565i)5-s + (0.300 + 4.96i)6-s + (−0.806 + 2.48i)7-s + (8.28 − 2.69i)8-s + (3.79 + 8.16i)9-s + 1.15·10-s + (2.89 − 2.38i)12-s + (13.8 − 10.0i)13-s + (−4.11 + 1.33i)14-s + (1.95 − 0.766i)15-s + (7.63 + 5.54i)16-s + (−9.47 + 13.0i)17-s + (−7.25 + 13.0i)18-s + ⋯ |
L(s) = 1 | + (0.487 + 0.670i)2-s + (0.843 + 0.537i)3-s + (0.0966 − 0.297i)4-s + (0.0821 − 0.113i)5-s + (0.0500 + 0.827i)6-s + (−0.115 + 0.354i)7-s + (1.03 − 0.336i)8-s + (0.421 + 0.906i)9-s + 0.115·10-s + (0.241 − 0.198i)12-s + (1.06 − 0.773i)13-s + (−0.293 + 0.0954i)14-s + (0.130 − 0.0511i)15-s + (0.477 + 0.346i)16-s + (−0.557 + 0.766i)17-s + (−0.402 + 0.724i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.478 - 0.878i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.478 - 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.76273 + 1.64179i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.76273 + 1.64179i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.52 - 1.61i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.974 - 1.34i)T + (-1.23 + 3.80i)T^{2} \) |
| 5 | \( 1 + (-0.410 + 0.565i)T + (-7.72 - 23.7i)T^{2} \) |
| 7 | \( 1 + (0.806 - 2.48i)T + (-39.6 - 28.8i)T^{2} \) |
| 13 | \( 1 + (-13.8 + 10.0i)T + (52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (9.47 - 13.0i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (-4.92 - 15.1i)T + (-292. + 212. i)T^{2} \) |
| 23 | \( 1 + 23.1iT - 529T^{2} \) |
| 29 | \( 1 + (5.10 + 1.65i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (-3.28 + 2.38i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (-19.6 + 60.4i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (64.1 - 20.8i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 - 22.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + (70.2 - 22.8i)T + (1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (25.1 + 34.6i)T + (-868. + 2.67e3i)T^{2} \) |
| 59 | \( 1 + (27.3 + 8.88i)T + (2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (37.4 + 27.2i)T + (1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 77.2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-24.2 + 33.3i)T + (-1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-17.5 + 53.9i)T + (-4.31e3 - 3.13e3i)T^{2} \) |
| 79 | \( 1 + (41.1 - 29.9i)T + (1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-34.8 + 47.9i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 - 38.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (13.1 - 9.57i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02815512997258869741137058151, −10.46743611654009824264415843924, −9.456177617888327877222284194533, −8.479749522176149228143870543291, −7.68107025328415828317330565382, −6.39020763178355073296819758158, −5.54294301848925304996854449323, −4.44658626279380094284275867733, −3.34712182645287563346407492822, −1.71405545678666072810966990178,
1.45202324460079378358063871590, 2.71802474960887502227126960641, 3.63862297691210574709227960801, 4.68235057279938144653518088194, 6.51566144842913839394473253901, 7.23887787567053493959268907108, 8.284602205593244726060616039488, 9.130571523962317133601196077437, 10.24283988843027861216571287986, 11.40203228099089204024064323105