L(s) = 1 | + (−0.974 − 1.34i)2-s + (−1.09 + 2.79i)3-s + (0.386 − 1.18i)4-s + (−0.410 + 0.565i)5-s + (4.81 − 1.24i)6-s + (−0.806 + 2.48i)7-s + (−8.28 + 2.69i)8-s + (−6.59 − 6.12i)9-s + 1.15·10-s + (2.89 + 2.38i)12-s + (13.8 − 10.0i)13-s + (4.11 − 1.33i)14-s + (−1.12 − 1.76i)15-s + (7.63 + 5.54i)16-s + (9.47 − 13.0i)17-s + (−1.79 + 14.8i)18-s + ⋯ |
L(s) = 1 | + (−0.487 − 0.670i)2-s + (−0.365 + 0.930i)3-s + (0.0966 − 0.297i)4-s + (−0.0821 + 0.113i)5-s + (0.802 − 0.208i)6-s + (−0.115 + 0.354i)7-s + (−1.03 + 0.336i)8-s + (−0.732 − 0.680i)9-s + 0.115·10-s + (0.241 + 0.198i)12-s + (1.06 − 0.773i)13-s + (0.293 − 0.0954i)14-s + (−0.0751 − 0.117i)15-s + (0.477 + 0.346i)16-s + (0.557 − 0.766i)17-s + (−0.0998 + 0.823i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.07551 - 0.165298i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07551 - 0.165298i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.09 - 2.79i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.974 + 1.34i)T + (-1.23 + 3.80i)T^{2} \) |
| 5 | \( 1 + (0.410 - 0.565i)T + (-7.72 - 23.7i)T^{2} \) |
| 7 | \( 1 + (0.806 - 2.48i)T + (-39.6 - 28.8i)T^{2} \) |
| 13 | \( 1 + (-13.8 + 10.0i)T + (52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (-9.47 + 13.0i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (-4.92 - 15.1i)T + (-292. + 212. i)T^{2} \) |
| 23 | \( 1 - 23.1iT - 529T^{2} \) |
| 29 | \( 1 + (-5.10 - 1.65i)T + (680. + 494. i)T^{2} \) |
| 31 | \( 1 + (-3.28 + 2.38i)T + (296. - 913. i)T^{2} \) |
| 37 | \( 1 + (-19.6 + 60.4i)T + (-1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (-64.1 + 20.8i)T + (1.35e3 - 988. i)T^{2} \) |
| 43 | \( 1 - 22.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-70.2 + 22.8i)T + (1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-25.1 - 34.6i)T + (-868. + 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-27.3 - 8.88i)T + (2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (37.4 + 27.2i)T + (1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 77.2T + 4.48e3T^{2} \) |
| 71 | \( 1 + (24.2 - 33.3i)T + (-1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-17.5 + 53.9i)T + (-4.31e3 - 3.13e3i)T^{2} \) |
| 79 | \( 1 + (41.1 - 29.9i)T + (1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (34.8 - 47.9i)T + (-2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 + 38.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (13.1 - 9.57i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93752886533878768462662237168, −10.42306446215907930273009675582, −9.394016006144505018597897887016, −8.941233870157582586265694052372, −7.54025900849274561141227907882, −5.79977085242493267750626980409, −5.60978650896050142749181681181, −3.83717993266380802847577094056, −2.80768075655858865802505780177, −0.921206915201657954834574957219,
0.898417773082125678666154970933, 2.73415429501887836121790070821, 4.28067443993674707713233347627, 5.98074668382875437742924684101, 6.55877275038422794822468472410, 7.44864994438553069188517733406, 8.329444020156294137183148191747, 8.958874307387788149452200747233, 10.39442555744645686984273297526, 11.39731955884000267380268865739