L(s) = 1 | − 3.31i·2-s + 3·3-s − 7·4-s − 6.63i·5-s − 9.94i·6-s + 8·7-s + 9.94i·8-s + 9·9-s − 22·10-s − 21·12-s − 4·13-s − 26.5i·14-s − 19.8i·15-s + 5.00·16-s − 13.2i·17-s − 29.8i·18-s + ⋯ |
L(s) = 1 | − 1.65i·2-s + 3-s − 1.75·4-s − 1.32i·5-s − 1.65i·6-s + 1.14·7-s + 1.24i·8-s + 9-s − 2.20·10-s − 1.75·12-s − 0.307·13-s − 1.89i·14-s − 1.32i·15-s + 0.312·16-s − 0.780i·17-s − 1.65i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.38296i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.38296i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 3.31iT - 4T^{2} \) |
| 5 | \( 1 + 6.63iT - 25T^{2} \) |
| 7 | \( 1 - 8T + 49T^{2} \) |
| 13 | \( 1 + 4T + 169T^{2} \) |
| 17 | \( 1 + 13.2iT - 289T^{2} \) |
| 19 | \( 1 - 6T + 361T^{2} \) |
| 23 | \( 1 - 6.63iT - 529T^{2} \) |
| 29 | \( 1 - 39.7iT - 841T^{2} \) |
| 31 | \( 1 + 26T + 961T^{2} \) |
| 37 | \( 1 - 30T + 1.36e3T^{2} \) |
| 41 | \( 1 + 13.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 42T + 1.84e3T^{2} \) |
| 47 | \( 1 - 86.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 59.6iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 66.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 12T + 3.72e3T^{2} \) |
| 67 | \( 1 - 2T + 4.48e3T^{2} \) |
| 71 | \( 1 + 59.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 74T + 5.32e3T^{2} \) |
| 79 | \( 1 - 40T + 6.24e3T^{2} \) |
| 83 | \( 1 - 39.7iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 119. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 62T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85938176637635855243928737379, −9.726769499814129162082651552549, −9.102348159074849988871042884137, −8.421573525065110104475712916289, −7.42646468162204052913179520957, −5.05633495519541799269384137125, −4.52576966695752003617016637773, −3.28550989201391704616514474527, −1.95828073273500628633196463102, −1.08156298363179726751424690256,
2.22922139084358807648094135907, 3.78399226838600941140469186207, 4.92557891552064406219353494769, 6.22539578064342916048976025464, 7.10510599803147858989487005421, 7.83190707614531253158941923857, 8.390712779255600836541277311472, 9.525196202594489687419529564589, 10.51396447632304208356989650948, 11.57004167915732868983528299016