Properties

Label 2-363-3.2-c2-0-28
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $9.89103$
Root an. cond. $3.14500$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 4·4-s + 11·7-s + 9·9-s − 12·12-s − 22·13-s + 16·16-s + 11·19-s − 33·21-s + 25·25-s − 27·27-s + 44·28-s + 59·31-s + 36·36-s + 47·37-s + 66·39-s − 22·43-s − 48·48-s + 72·49-s − 88·52-s − 33·57-s − 121·61-s + 99·63-s + 64·64-s − 13·67-s + 143·73-s − 75·75-s + ⋯
L(s)  = 1  − 3-s + 4-s + 11/7·7-s + 9-s − 12-s − 1.69·13-s + 16-s + 0.578·19-s − 1.57·21-s + 25-s − 27-s + 11/7·28-s + 1.90·31-s + 36-s + 1.27·37-s + 1.69·39-s − 0.511·43-s − 48-s + 1.46·49-s − 1.69·52-s − 0.578·57-s − 1.98·61-s + 11/7·63-s + 64-s − 0.194·67-s + 1.95·73-s − 75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(9.89103\)
Root analytic conductor: \(3.14500\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{363} (122, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.812812960\)
\(L(\frac12)\) \(\approx\) \(1.812812960\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
11 \( 1 \)
good2 \( ( 1 - p T )( 1 + p T ) \)
5 \( ( 1 - p T )( 1 + p T ) \)
7 \( 1 - 11 T + p^{2} T^{2} \)
13 \( 1 + 22 T + p^{2} T^{2} \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( 1 - 11 T + p^{2} T^{2} \)
23 \( ( 1 - p T )( 1 + p T ) \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( 1 - 59 T + p^{2} T^{2} \)
37 \( 1 - 47 T + p^{2} T^{2} \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( 1 + 22 T + p^{2} T^{2} \)
47 \( ( 1 - p T )( 1 + p T ) \)
53 \( ( 1 - p T )( 1 + p T ) \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( 1 + 121 T + p^{2} T^{2} \)
67 \( 1 + 13 T + p^{2} T^{2} \)
71 \( ( 1 - p T )( 1 + p T ) \)
73 \( 1 - 143 T + p^{2} T^{2} \)
79 \( 1 - 11 T + p^{2} T^{2} \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( 1 + 169 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.30892749158712078603163940895, −10.56130346288221277108704863632, −9.695028722715903849503364508373, −8.034501373878848073185864004123, −7.39348566138595618180256575435, −6.44330728211004478990456938699, −5.22998109496337717304415858420, −4.59457931614714919593781088981, −2.54541508786044517333468954731, −1.21910497016182117701152442657, 1.21910497016182117701152442657, 2.54541508786044517333468954731, 4.59457931614714919593781088981, 5.22998109496337717304415858420, 6.44330728211004478990456938699, 7.39348566138595618180256575435, 8.034501373878848073185864004123, 9.695028722715903849503364508373, 10.56130346288221277108704863632, 11.30892749158712078603163940895

Graph of the $Z$-function along the critical line