L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 + 0.951i)3-s + (−0.309 − 0.951i)4-s + (1.61 − 1.17i)5-s + (−0.809 + 0.587i)6-s + (−1.23 − 3.80i)7-s + (0.927 − 2.85i)8-s + (−0.809 − 0.587i)9-s + 2·10-s + 0.999·12-s + (−1.61 − 1.17i)13-s + (1.23 − 3.80i)14-s + (0.618 + 1.90i)15-s + (0.809 − 0.587i)16-s + (−1.61 + 1.17i)17-s + (−0.309 − 0.951i)18-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.178 + 0.549i)3-s + (−0.154 − 0.475i)4-s + (0.723 − 0.525i)5-s + (−0.330 + 0.239i)6-s + (−0.467 − 1.43i)7-s + (0.327 − 1.00i)8-s + (−0.269 − 0.195i)9-s + 0.632·10-s + 0.288·12-s + (−0.448 − 0.326i)13-s + (0.330 − 1.01i)14-s + (0.159 + 0.491i)15-s + (0.202 − 0.146i)16-s + (−0.392 + 0.285i)17-s + (−0.0728 − 0.224i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56244 - 0.545927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56244 - 0.545927i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.809 - 0.587i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.61 + 1.17i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.23 + 3.80i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.61 + 1.17i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.61 - 1.17i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 - 5.70i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-6.47 - 4.70i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.85 - 5.70i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.618 + 1.90i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-2.47 + 7.60i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.85 + 3.52i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.23 + 3.80i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.85 + 3.52i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.32 - 13.3i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (3.23 + 2.35i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-9.70 + 7.05i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (1.61 + 1.17i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04374390321835708829616362653, −10.26096586068518123325551155818, −9.751132638106307679571016945129, −8.741389982839601996509955212134, −7.14275722682849799658408568502, −6.45536507269735971089444455845, −5.21566021857320539991304636464, −4.64689388108015808252163385028, −3.41392332888437310674738873242, −1.04179043386401459710073506741,
2.36026984055612069969970144140, 2.82018581473423530918529981518, 4.59680674801099632065148050062, 5.72379071659773150020689052389, 6.52641738903461047931731754318, 7.73087969932428976566360110184, 8.857557702407961576245528068263, 9.596710929943466167605038587549, 10.95081130118889611654642108973, 11.77031720719592189043859172571