L(s) = 1 | + (−2.11 + 1.53i)2-s + (−0.309 − 0.951i)3-s + (1.5 − 4.61i)4-s + (0.5 + 0.363i)5-s + (2.11 + 1.53i)6-s + (0.309 − 0.951i)7-s + (2.30 + 7.10i)8-s + (−0.809 + 0.587i)9-s − 1.61·10-s − 4.85·12-s + (0.190 − 0.138i)13-s + (0.809 + 2.48i)14-s + (0.190 − 0.587i)15-s + (−7.97 − 5.79i)16-s + (−0.927 − 0.673i)17-s + (0.809 − 2.48i)18-s + ⋯ |
L(s) = 1 | + (−1.49 + 1.08i)2-s + (−0.178 − 0.549i)3-s + (0.750 − 2.30i)4-s + (0.223 + 0.162i)5-s + (0.864 + 0.628i)6-s + (0.116 − 0.359i)7-s + (0.816 + 2.51i)8-s + (−0.269 + 0.195i)9-s − 0.511·10-s − 1.40·12-s + (0.0529 − 0.0384i)13-s + (0.216 + 0.665i)14-s + (0.0493 − 0.151i)15-s + (−1.99 − 1.44i)16-s + (−0.224 − 0.163i)17-s + (0.190 − 0.586i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.489157 - 0.184075i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.489157 - 0.184075i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (2.11 - 1.53i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.363i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.309 + 0.951i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.190 + 0.138i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.927 + 0.673i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.80 + 5.56i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.236T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 + 5.70i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.92 + 3.57i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.92 - 5.93i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.0729 + 0.224i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 6.70T + 43T^{2} \) |
| 47 | \( 1 + (3.11 + 9.59i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.224i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.28 + 7.02i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (9.35 + 6.79i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 1.85T + 67T^{2} \) |
| 71 | \( 1 + (8.35 + 6.06i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.76 + 5.42i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.89 + 6.46i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.19 - 0.865i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 8.23T + 89T^{2} \) |
| 97 | \( 1 + (6.35 - 4.61i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96261400251855302843839548763, −10.20024449882396976510623672915, −9.297226099426997506362517302827, −8.364320332696430081101218688701, −7.63068183853984660780592469763, −6.67875773645983708311433837772, −6.12797290465361444543822878569, −4.78225054740279230987821264256, −2.26750602750295708225563223956, −0.61893711627629929726786056548,
1.51156156693103737334209707350, 2.90379195700167494169822798263, 4.12845160631002208742763406072, 5.73836767489756991819298644282, 7.18073510245233359133889444389, 8.314039392246169966491289403067, 8.952095025784348930146286375358, 9.772333479153175490631149122071, 10.54404839818605914599995620682, 11.17638069045067913678476796520