L(s) = 1 | + (−2.11 + 1.53i)2-s + (−0.309 − 0.951i)3-s + (1.5 − 4.61i)4-s + (0.5 + 0.363i)5-s + (2.11 + 1.53i)6-s + (0.309 − 0.951i)7-s + (2.30 + 7.10i)8-s + (−0.809 + 0.587i)9-s − 1.61·10-s − 4.85·12-s + (0.190 − 0.138i)13-s + (0.809 + 2.48i)14-s + (0.190 − 0.587i)15-s + (−7.97 − 5.79i)16-s + (−0.927 − 0.673i)17-s + (0.809 − 2.48i)18-s + ⋯ |
L(s) = 1 | + (−1.49 + 1.08i)2-s + (−0.178 − 0.549i)3-s + (0.750 − 2.30i)4-s + (0.223 + 0.162i)5-s + (0.864 + 0.628i)6-s + (0.116 − 0.359i)7-s + (0.816 + 2.51i)8-s + (−0.269 + 0.195i)9-s − 0.511·10-s − 1.40·12-s + (0.0529 − 0.0384i)13-s + (0.216 + 0.665i)14-s + (0.0493 − 0.151i)15-s + (−1.99 − 1.44i)16-s + (−0.224 − 0.163i)17-s + (0.190 − 0.586i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(0.751+0.659i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(0.751+0.659i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
0.751+0.659i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), 0.751+0.659i)
|
Particular Values
L(1) |
≈ |
0.489157−0.184075i |
L(21) |
≈ |
0.489157−0.184075i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309+0.951i)T |
| 11 | 1 |
good | 2 | 1+(2.11−1.53i)T+(0.618−1.90i)T2 |
| 5 | 1+(−0.5−0.363i)T+(1.54+4.75i)T2 |
| 7 | 1+(−0.309+0.951i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−0.190+0.138i)T+(4.01−12.3i)T2 |
| 17 | 1+(0.927+0.673i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.80+5.56i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.236T+23T2 |
| 29 | 1+(−1.85+5.70i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−4.92+3.57i)T+(9.57−29.4i)T2 |
| 37 | 1+(1.92−5.93i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.0729+0.224i)T+(−33.1+24.0i)T2 |
| 43 | 1−6.70T+43T2 |
| 47 | 1+(3.11+9.59i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−0.309+0.224i)T+(16.3−50.4i)T2 |
| 59 | 1+(−2.28+7.02i)T+(−47.7−34.6i)T2 |
| 61 | 1+(9.35+6.79i)T+(18.8+58.0i)T2 |
| 67 | 1−1.85T+67T2 |
| 71 | 1+(8.35+6.06i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.76+5.42i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−8.89+6.46i)T+(24.4−75.1i)T2 |
| 83 | 1+(−1.19−0.865i)T+(25.6+78.9i)T2 |
| 89 | 1+8.23T+89T2 |
| 97 | 1+(6.35−4.61i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96261400251855302843839548763, −10.20024449882396976510623672915, −9.297226099426997506362517302827, −8.364320332696430081101218688701, −7.63068183853984660780592469763, −6.67875773645983708311433837772, −6.12797290465361444543822878569, −4.78225054740279230987821264256, −2.26750602750295708225563223956, −0.61893711627629929726786056548,
1.51156156693103737334209707350, 2.90379195700167494169822798263, 4.12845160631002208742763406072, 5.73836767489756991819298644282, 7.18073510245233359133889444389, 8.314039392246169966491289403067, 8.952095025784348930146286375358, 9.772333479153175490631149122071, 10.54404839818605914599995620682, 11.17638069045067913678476796520