Properties

Label 2-363-1.1-c3-0-16
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $21.4176$
Root an. cond. $4.62792$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 3·3-s + 8·4-s − 13·5-s + 12·6-s − 26·7-s + 9·9-s + 52·10-s − 24·12-s + 73·13-s + 104·14-s + 39·15-s − 64·16-s − 31·17-s − 36·18-s + 108·19-s − 104·20-s + 78·21-s − 86·23-s + 44·25-s − 292·26-s − 27·27-s − 208·28-s + 207·29-s − 156·30-s + 208·31-s + 256·32-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 1.16·5-s + 0.816·6-s − 1.40·7-s + 1/3·9-s + 1.64·10-s − 0.577·12-s + 1.55·13-s + 1.98·14-s + 0.671·15-s − 16-s − 0.442·17-s − 0.471·18-s + 1.30·19-s − 1.16·20-s + 0.810·21-s − 0.779·23-s + 0.351·25-s − 2.20·26-s − 0.192·27-s − 1.40·28-s + 1.32·29-s − 0.949·30-s + 1.20·31-s + 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(21.4176\)
Root analytic conductor: \(4.62792\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
11 \( 1 \)
good2 \( 1 + p^{2} T + p^{3} T^{2} \)
5 \( 1 + 13 T + p^{3} T^{2} \)
7 \( 1 + 26 T + p^{3} T^{2} \)
13 \( 1 - 73 T + p^{3} T^{2} \)
17 \( 1 + 31 T + p^{3} T^{2} \)
19 \( 1 - 108 T + p^{3} T^{2} \)
23 \( 1 + 86 T + p^{3} T^{2} \)
29 \( 1 - 207 T + p^{3} T^{2} \)
31 \( 1 - 208 T + p^{3} T^{2} \)
37 \( 1 - 45 T + p^{3} T^{2} \)
41 \( 1 + 247 T + p^{3} T^{2} \)
43 \( 1 - 450 T + p^{3} T^{2} \)
47 \( 1 + 500 T + p^{3} T^{2} \)
53 \( 1 + 441 T + p^{3} T^{2} \)
59 \( 1 - 598 T + p^{3} T^{2} \)
61 \( 1 + 378 T + p^{3} T^{2} \)
67 \( 1 - 494 T + p^{3} T^{2} \)
71 \( 1 + 594 T + p^{3} T^{2} \)
73 \( 1 + 1034 T + p^{3} T^{2} \)
79 \( 1 + 352 T + p^{3} T^{2} \)
83 \( 1 + 360 T + p^{3} T^{2} \)
89 \( 1 + 351 T + p^{3} T^{2} \)
97 \( 1 - 1079 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35485827882074705004000985052, −9.690431455642004068773008326754, −8.659797398301779021238289511977, −7.907473805731824122793797774373, −6.87938942167902816935910704847, −6.12266902746513471057827191141, −4.35036333141957798385810531143, −3.19823779423267923983083649726, −1.04854441214814406397058049865, 0, 1.04854441214814406397058049865, 3.19823779423267923983083649726, 4.35036333141957798385810531143, 6.12266902746513471057827191141, 6.87938942167902816935910704847, 7.907473805731824122793797774373, 8.659797398301779021238289511977, 9.690431455642004068773008326754, 10.35485827882074705004000985052

Graph of the $Z$-function along the critical line