Properties

Label 2-363-1.1-c1-0-6
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s + 3-s + 3.00·4-s + 2·5-s − 2.23·6-s + 4.47·7-s − 2.23·8-s + 9-s − 4.47·10-s + 3.00·12-s − 10.0·14-s + 2·15-s − 0.999·16-s − 4.47·17-s − 2.23·18-s + 4.47·19-s + 6.00·20-s + 4.47·21-s − 4·23-s − 2.23·24-s − 25-s + 27-s + 13.4·28-s − 4.47·29-s − 4.47·30-s + 6.70·32-s + 10.0·34-s + ⋯
L(s)  = 1  − 1.58·2-s + 0.577·3-s + 1.50·4-s + 0.894·5-s − 0.912·6-s + 1.69·7-s − 0.790·8-s + 0.333·9-s − 1.41·10-s + 0.866·12-s − 2.67·14-s + 0.516·15-s − 0.249·16-s − 1.08·17-s − 0.527·18-s + 1.02·19-s + 1.34·20-s + 0.975·21-s − 0.834·23-s − 0.456·24-s − 0.200·25-s + 0.192·27-s + 2.53·28-s − 0.830·29-s − 0.816·30-s + 1.18·32-s + 1.71·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.043123888\)
\(L(\frac12)\) \(\approx\) \(1.043123888\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
good2 \( 1 + 2.23T + 2T^{2} \)
5 \( 1 - 2T + 5T^{2} \)
7 \( 1 - 4.47T + 7T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 - 4.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 4.47T + 41T^{2} \)
43 \( 1 + 4.47T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8.94T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 8.94T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 - 8.94T + 83T^{2} \)
89 \( 1 + 14T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09872188734298677461845321186, −10.29874149462326644647336749676, −9.403921354606738867216501418016, −8.753138004800805002071256031689, −7.899713085368000972535923301565, −7.23339165975832432669132254947, −5.78864244709404609915381922195, −4.44686979466227102752556716323, −2.30867629089593721766915328887, −1.50398825572931132120664116879, 1.50398825572931132120664116879, 2.30867629089593721766915328887, 4.44686979466227102752556716323, 5.78864244709404609915381922195, 7.23339165975832432669132254947, 7.899713085368000972535923301565, 8.753138004800805002071256031689, 9.403921354606738867216501418016, 10.29874149462326644647336749676, 11.09872188734298677461845321186

Graph of the $Z$-function along the critical line