Properties

Label 2-363-1.1-c1-0-15
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·2-s + 3-s + 4.37·4-s − 2.37·5-s + 2.52·6-s + 0.792·7-s + 5.98·8-s + 9-s − 5.98·10-s + 4.37·12-s − 4.10·13-s + 2·14-s − 2.37·15-s + 6.37·16-s − 5.98·17-s + 2.52·18-s + 4.25·19-s − 10.3·20-s + 0.792·21-s + 2·23-s + 5.98·24-s + 0.627·25-s − 10.3·26-s + 27-s + 3.46·28-s − 2.52·29-s − 5.98·30-s + ⋯
L(s)  = 1  + 1.78·2-s + 0.577·3-s + 2.18·4-s − 1.06·5-s + 1.03·6-s + 0.299·7-s + 2.11·8-s + 0.333·9-s − 1.89·10-s + 1.26·12-s − 1.13·13-s + 0.534·14-s − 0.612·15-s + 1.59·16-s − 1.45·17-s + 0.594·18-s + 0.976·19-s − 2.31·20-s + 0.172·21-s + 0.417·23-s + 1.22·24-s + 0.125·25-s − 2.03·26-s + 0.192·27-s + 0.654·28-s − 0.468·29-s − 1.09·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.614090370\)
\(L(\frac12)\) \(\approx\) \(3.614090370\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
good2 \( 1 - 2.52T + 2T^{2} \)
5 \( 1 + 2.37T + 5T^{2} \)
7 \( 1 - 0.792T + 7T^{2} \)
13 \( 1 + 4.10T + 13T^{2} \)
17 \( 1 + 5.98T + 17T^{2} \)
19 \( 1 - 4.25T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 + 2.52T + 29T^{2} \)
31 \( 1 - 7.37T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 + 5.69T + 41T^{2} \)
43 \( 1 + 6.63T + 43T^{2} \)
47 \( 1 + 1.25T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 2.67T + 61T^{2} \)
67 \( 1 - 16.1T + 67T^{2} \)
71 \( 1 - 0.744T + 71T^{2} \)
73 \( 1 - 7.42T + 73T^{2} \)
79 \( 1 - 5.84T + 79T^{2} \)
83 \( 1 - 8.51T + 83T^{2} \)
89 \( 1 + 6.37T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70185077670714593076138147846, −11.07630728329445708473125184395, −9.718667796049862145367289080048, −8.301249964895047934689619514100, −7.37871115546445530999817545694, −6.62237116823775318658867605575, −5.09813228723920962325422278655, −4.42144199718635571856024854043, −3.42062086792945072410195055528, −2.33704734588710130923530548827, 2.33704734588710130923530548827, 3.42062086792945072410195055528, 4.42144199718635571856024854043, 5.09813228723920962325422278655, 6.62237116823775318658867605575, 7.37871115546445530999817545694, 8.301249964895047934689619514100, 9.718667796049862145367289080048, 11.07630728329445708473125184395, 11.70185077670714593076138147846

Graph of the $Z$-function along the critical line