Properties

Label 2-360-15.2-c1-0-4
Degree $2$
Conductor $360$
Sign $0.0618 + 0.998i$
Analytic cond. $2.87461$
Root an. cond. $1.69546$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.12 − 0.707i)5-s − 5.65i·11-s + (3 − 3i)13-s − 4i·19-s + (−2.82 − 2.82i)23-s + (3.99 + 3i)25-s − 1.41·29-s − 8·31-s + (7 + 7i)37-s + 1.41i·41-s + (4 − 4i)43-s + (−2.82 + 2.82i)47-s − 7i·49-s + (8.48 + 8.48i)53-s + (−4.00 + 12i)55-s + ⋯
L(s)  = 1  + (−0.948 − 0.316i)5-s − 1.70i·11-s + (0.832 − 0.832i)13-s − 0.917i·19-s + (−0.589 − 0.589i)23-s + (0.799 + 0.600i)25-s − 0.262·29-s − 1.43·31-s + (1.15 + 1.15i)37-s + 0.220i·41-s + (0.609 − 0.609i)43-s + (−0.412 + 0.412i)47-s i·49-s + (1.16 + 1.16i)53-s + (−0.539 + 1.61i)55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0618 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0618 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $0.0618 + 0.998i$
Analytic conductor: \(2.87461\)
Root analytic conductor: \(1.69546\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{360} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 360,\ (\ :1/2),\ 0.0618 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.723691 - 0.680222i\)
\(L(\frac12)\) \(\approx\) \(0.723691 - 0.680222i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (2.12 + 0.707i)T \)
good7 \( 1 + 7iT^{2} \)
11 \( 1 + 5.65iT - 11T^{2} \)
13 \( 1 + (-3 + 3i)T - 13iT^{2} \)
17 \( 1 - 17iT^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + (2.82 + 2.82i)T + 23iT^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + (-7 - 7i)T + 37iT^{2} \)
41 \( 1 - 1.41iT - 41T^{2} \)
43 \( 1 + (-4 + 4i)T - 43iT^{2} \)
47 \( 1 + (2.82 - 2.82i)T - 47iT^{2} \)
53 \( 1 + (-8.48 - 8.48i)T + 53iT^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 + 12T + 61T^{2} \)
67 \( 1 + (8 + 8i)T + 67iT^{2} \)
71 \( 1 + 5.65iT - 71T^{2} \)
73 \( 1 + (3 - 3i)T - 73iT^{2} \)
79 \( 1 - 8iT - 79T^{2} \)
83 \( 1 + (-11.3 - 11.3i)T + 83iT^{2} \)
89 \( 1 - 7.07T + 89T^{2} \)
97 \( 1 + (-5 - 5i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15154644613798573684545226796, −10.64349845750956454363628423538, −9.099296386420615116459094770523, −8.422086396016260802238858819151, −7.65984530545156064177098316393, −6.33671650585931222341706671289, −5.35289135027668175713423740649, −3.99451668117529367565606951937, −3.04838393155607177083994596426, −0.70539636424688377879002508097, 1.93513938772314484534875481100, 3.70713420445550801069924603530, 4.44220781751072172516157745919, 5.92740473855369370401405931841, 7.15362759833428185811671736880, 7.69435875814692657276421279218, 8.909658441704129500123592153565, 9.840540350058627910149676371552, 10.84121998743577404975762823030, 11.69749679332661283970903561466

Graph of the $Z$-function along the critical line