L(s) = 1 | − 3·2-s + 2·3-s + 4-s − 6·6-s + 21·8-s − 23·9-s − 45·11-s + 2·12-s − 59·13-s − 71·16-s + 54·17-s + 69·18-s − 121·19-s + 135·22-s − 69·23-s + 42·24-s + 177·26-s − 100·27-s − 162·29-s − 88·31-s + 45·32-s − 90·33-s − 162·34-s − 23·36-s + 259·37-s + 363·38-s − 118·39-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 0.384·3-s + 1/8·4-s − 0.408·6-s + 0.928·8-s − 0.851·9-s − 1.23·11-s + 0.0481·12-s − 1.25·13-s − 1.10·16-s + 0.770·17-s + 0.903·18-s − 1.46·19-s + 1.30·22-s − 0.625·23-s + 0.357·24-s + 1.33·26-s − 0.712·27-s − 1.03·29-s − 0.509·31-s + 0.248·32-s − 0.474·33-s − 0.817·34-s − 0.106·36-s + 1.15·37-s + 1.54·38-s − 0.484·39-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1225s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3447568041 |
L(21) |
≈ |
0.3447568041 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+3T+p3T2 |
| 3 | 1−2T+p3T2 |
| 11 | 1+45T+p3T2 |
| 13 | 1+59T+p3T2 |
| 17 | 1−54T+p3T2 |
| 19 | 1+121T+p3T2 |
| 23 | 1+3pT+p3T2 |
| 29 | 1+162T+p3T2 |
| 31 | 1+88T+p3T2 |
| 37 | 1−7pT+p3T2 |
| 41 | 1−195T+p3T2 |
| 43 | 1−286T+p3T2 |
| 47 | 1+45T+p3T2 |
| 53 | 1+597T+p3T2 |
| 59 | 1+360T+p3T2 |
| 61 | 1−392T+p3T2 |
| 67 | 1−280T+p3T2 |
| 71 | 1−48T+p3T2 |
| 73 | 1+668T+p3T2 |
| 79 | 1−782T+p3T2 |
| 83 | 1+768T+p3T2 |
| 89 | 1+1194T+p3T2 |
| 97 | 1+902T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.376365677049136337030528622700, −8.507734516966498819698463759291, −7.82638894032474638578069066495, −7.43611706745052403283995209497, −6.03153630643110133771569337587, −5.13785186455935956075930780139, −4.15001330393488703196686324770, −2.76318250472831319611100182638, −1.99167026243351752391888723186, −0.32633284316797679934872944314,
0.32633284316797679934872944314, 1.99167026243351752391888723186, 2.76318250472831319611100182638, 4.15001330393488703196686324770, 5.13785186455935956075930780139, 6.03153630643110133771569337587, 7.43611706745052403283995209497, 7.82638894032474638578069066495, 8.507734516966498819698463759291, 9.376365677049136337030528622700