Properties

Label 2-35e2-1.1-c3-0-11
Degree $2$
Conductor $1225$
Sign $1$
Analytic cond. $72.2773$
Root an. cond. $8.50160$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 2·3-s + 4-s − 6·6-s + 21·8-s − 23·9-s − 45·11-s + 2·12-s − 59·13-s − 71·16-s + 54·17-s + 69·18-s − 121·19-s + 135·22-s − 69·23-s + 42·24-s + 177·26-s − 100·27-s − 162·29-s − 88·31-s + 45·32-s − 90·33-s − 162·34-s − 23·36-s + 259·37-s + 363·38-s − 118·39-s + ⋯
L(s)  = 1  − 1.06·2-s + 0.384·3-s + 1/8·4-s − 0.408·6-s + 0.928·8-s − 0.851·9-s − 1.23·11-s + 0.0481·12-s − 1.25·13-s − 1.10·16-s + 0.770·17-s + 0.903·18-s − 1.46·19-s + 1.30·22-s − 0.625·23-s + 0.357·24-s + 1.33·26-s − 0.712·27-s − 1.03·29-s − 0.509·31-s + 0.248·32-s − 0.474·33-s − 0.817·34-s − 0.106·36-s + 1.15·37-s + 1.54·38-s − 0.484·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(72.2773\)
Root analytic conductor: \(8.50160\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1225,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3447568041\)
\(L(\frac12)\) \(\approx\) \(0.3447568041\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
3 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 45 T + p^{3} T^{2} \)
13 \( 1 + 59 T + p^{3} T^{2} \)
17 \( 1 - 54 T + p^{3} T^{2} \)
19 \( 1 + 121 T + p^{3} T^{2} \)
23 \( 1 + 3 p T + p^{3} T^{2} \)
29 \( 1 + 162 T + p^{3} T^{2} \)
31 \( 1 + 88 T + p^{3} T^{2} \)
37 \( 1 - 7 p T + p^{3} T^{2} \)
41 \( 1 - 195 T + p^{3} T^{2} \)
43 \( 1 - 286 T + p^{3} T^{2} \)
47 \( 1 + 45 T + p^{3} T^{2} \)
53 \( 1 + 597 T + p^{3} T^{2} \)
59 \( 1 + 360 T + p^{3} T^{2} \)
61 \( 1 - 392 T + p^{3} T^{2} \)
67 \( 1 - 280 T + p^{3} T^{2} \)
71 \( 1 - 48 T + p^{3} T^{2} \)
73 \( 1 + 668 T + p^{3} T^{2} \)
79 \( 1 - 782 T + p^{3} T^{2} \)
83 \( 1 + 768 T + p^{3} T^{2} \)
89 \( 1 + 1194 T + p^{3} T^{2} \)
97 \( 1 + 902 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.376365677049136337030528622700, −8.507734516966498819698463759291, −7.82638894032474638578069066495, −7.43611706745052403283995209497, −6.03153630643110133771569337587, −5.13785186455935956075930780139, −4.15001330393488703196686324770, −2.76318250472831319611100182638, −1.99167026243351752391888723186, −0.32633284316797679934872944314, 0.32633284316797679934872944314, 1.99167026243351752391888723186, 2.76318250472831319611100182638, 4.15001330393488703196686324770, 5.13785186455935956075930780139, 6.03153630643110133771569337587, 7.43611706745052403283995209497, 7.82638894032474638578069066495, 8.507734516966498819698463759291, 9.376365677049136337030528622700

Graph of the $Z$-function along the critical line