Properties

Label 2-35e2-1.1-c3-0-106
Degree $2$
Conductor $1225$
Sign $-1$
Analytic cond. $72.2773$
Root an. cond. $8.50160$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.84·2-s − 9.58·3-s + 15.4·4-s + 46.3·6-s − 36.0·8-s + 64.7·9-s + 62.1·11-s − 147.·12-s + 14.0·13-s + 50.9·16-s + 63.5·17-s − 313.·18-s − 48.7·19-s − 301.·22-s + 99.3·23-s + 345.·24-s − 68.2·26-s − 362.·27-s − 69.0·29-s + 9.68·31-s + 41.7·32-s − 595.·33-s − 307.·34-s + 1.00e3·36-s − 240.·37-s + 235.·38-s − 135.·39-s + ⋯
L(s)  = 1  − 1.71·2-s − 1.84·3-s + 1.93·4-s + 3.15·6-s − 1.59·8-s + 2.39·9-s + 1.70·11-s − 3.55·12-s + 0.300·13-s + 0.795·16-s + 0.906·17-s − 4.10·18-s − 0.588·19-s − 2.91·22-s + 0.900·23-s + 2.93·24-s − 0.514·26-s − 2.58·27-s − 0.442·29-s + 0.0561·31-s + 0.230·32-s − 3.14·33-s − 1.55·34-s + 4.63·36-s − 1.06·37-s + 1.00·38-s − 0.554·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(72.2773\)
Root analytic conductor: \(8.50160\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1225,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 + 4.84T + 8T^{2} \)
3 \( 1 + 9.58T + 27T^{2} \)
11 \( 1 - 62.1T + 1.33e3T^{2} \)
13 \( 1 - 14.0T + 2.19e3T^{2} \)
17 \( 1 - 63.5T + 4.91e3T^{2} \)
19 \( 1 + 48.7T + 6.85e3T^{2} \)
23 \( 1 - 99.3T + 1.21e4T^{2} \)
29 \( 1 + 69.0T + 2.43e4T^{2} \)
31 \( 1 - 9.68T + 2.97e4T^{2} \)
37 \( 1 + 240.T + 5.06e4T^{2} \)
41 \( 1 + 335.T + 6.89e4T^{2} \)
43 \( 1 + 51.2T + 7.95e4T^{2} \)
47 \( 1 + 451.T + 1.03e5T^{2} \)
53 \( 1 - 180.T + 1.48e5T^{2} \)
59 \( 1 + 268.T + 2.05e5T^{2} \)
61 \( 1 - 323.T + 2.26e5T^{2} \)
67 \( 1 - 541.T + 3.00e5T^{2} \)
71 \( 1 + 161.T + 3.57e5T^{2} \)
73 \( 1 - 305.T + 3.89e5T^{2} \)
79 \( 1 + 504.T + 4.93e5T^{2} \)
83 \( 1 + 513.T + 5.71e5T^{2} \)
89 \( 1 + 543.T + 7.04e5T^{2} \)
97 \( 1 - 1.86e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.124922058502696144109531335418, −8.234619366329011785141424004006, −7.03472901752874009035132641081, −6.73699440912720794576766934268, −5.94199711432685700350682523443, −4.90469260113944826905754662155, −3.67396005452955038873843986799, −1.64558723118750688615709789919, −1.06167432870786508679043778622, 0, 1.06167432870786508679043778622, 1.64558723118750688615709789919, 3.67396005452955038873843986799, 4.90469260113944826905754662155, 5.94199711432685700350682523443, 6.73699440912720794576766934268, 7.03472901752874009035132641081, 8.234619366329011785141424004006, 9.124922058502696144109531335418

Graph of the $Z$-function along the critical line