L(s) = 1 | + 0.670·2-s + 3-s − 1.54·4-s − 2.54·5-s + 0.670·6-s − 7-s − 2.38·8-s + 9-s − 1.71·10-s + 3.05·11-s − 1.54·12-s − 0.670·14-s − 2.54·15-s + 1.50·16-s + 1.34·17-s + 0.670·18-s − 7.60·19-s + 3.95·20-s − 21-s + 2.04·22-s + 1.84·23-s − 2.38·24-s + 1.50·25-s + 27-s + 1.54·28-s − 5.60·29-s − 1.71·30-s + ⋯ |
L(s) = 1 | + 0.474·2-s + 0.577·3-s − 0.774·4-s − 1.14·5-s + 0.273·6-s − 0.377·7-s − 0.841·8-s + 0.333·9-s − 0.540·10-s + 0.920·11-s − 0.447·12-s − 0.179·14-s − 0.658·15-s + 0.375·16-s + 0.325·17-s + 0.158·18-s − 1.74·19-s + 0.883·20-s − 0.218·21-s + 0.436·22-s + 0.384·23-s − 0.486·24-s + 0.300·25-s + 0.192·27-s + 0.292·28-s − 1.04·29-s − 0.312·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.445540138\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.445540138\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 0.670T + 2T^{2} \) |
| 5 | \( 1 + 2.54T + 5T^{2} \) |
| 11 | \( 1 - 3.05T + 11T^{2} \) |
| 17 | \( 1 - 1.34T + 17T^{2} \) |
| 19 | \( 1 + 7.60T + 19T^{2} \) |
| 23 | \( 1 - 1.84T + 23T^{2} \) |
| 29 | \( 1 + 5.60T + 29T^{2} \) |
| 31 | \( 1 + 10.2T + 31T^{2} \) |
| 37 | \( 1 - 9.20T + 37T^{2} \) |
| 41 | \( 1 - 8.04T + 41T^{2} \) |
| 43 | \( 1 - 1.49T + 43T^{2} \) |
| 47 | \( 1 - 3.89T + 47T^{2} \) |
| 53 | \( 1 - 0.502T + 53T^{2} \) |
| 59 | \( 1 - 4.28T + 59T^{2} \) |
| 61 | \( 1 + 0.683T + 61T^{2} \) |
| 67 | \( 1 - 7.68T + 67T^{2} \) |
| 71 | \( 1 - 14.2T + 71T^{2} \) |
| 73 | \( 1 - 12.0T + 73T^{2} \) |
| 79 | \( 1 - 4.91T + 79T^{2} \) |
| 83 | \( 1 - 1.20T + 83T^{2} \) |
| 89 | \( 1 + 13.7T + 89T^{2} \) |
| 97 | \( 1 - 7.18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.550582759255780331346366183394, −7.928966976669812473234378982847, −7.17170792864289448781047149311, −6.30527004233386598130724730883, −5.47487251254663665666254947876, −4.33049532233640749227234128016, −3.96231508580349169502224977930, −3.42362703532316299108264483471, −2.22001464106256051871163386402, −0.63077754961078147156198991067,
0.63077754961078147156198991067, 2.22001464106256051871163386402, 3.42362703532316299108264483471, 3.96231508580349169502224977930, 4.33049532233640749227234128016, 5.47487251254663665666254947876, 6.30527004233386598130724730883, 7.17170792864289448781047149311, 7.928966976669812473234378982847, 8.550582759255780331346366183394