L(s) = 1 | + 2.37·2-s + 3-s + 3.66·4-s + 2.66·5-s + 2.37·6-s − 7-s + 3.95·8-s + 9-s + 6.33·10-s − 1.57·11-s + 3.66·12-s − 2.37·14-s + 2.66·15-s + 2.08·16-s + 4.75·17-s + 2.37·18-s + 2.23·19-s + 9.74·20-s − 21-s − 3.74·22-s + 5.84·23-s + 3.95·24-s + 2.08·25-s + 27-s − 3.66·28-s + 4.23·29-s + 6.33·30-s + ⋯ |
L(s) = 1 | + 1.68·2-s + 0.577·3-s + 1.83·4-s + 1.19·5-s + 0.971·6-s − 0.377·7-s + 1.39·8-s + 0.333·9-s + 2.00·10-s − 0.475·11-s + 1.05·12-s − 0.635·14-s + 0.687·15-s + 0.521·16-s + 1.15·17-s + 0.560·18-s + 0.513·19-s + 2.17·20-s − 0.218·21-s − 0.799·22-s + 1.21·23-s + 0.807·24-s + 0.417·25-s + 0.192·27-s − 0.692·28-s + 0.786·29-s + 1.15·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.750509681\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.750509681\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 2.37T + 2T^{2} \) |
| 5 | \( 1 - 2.66T + 5T^{2} \) |
| 11 | \( 1 + 1.57T + 11T^{2} \) |
| 17 | \( 1 - 4.75T + 17T^{2} \) |
| 19 | \( 1 - 2.23T + 19T^{2} \) |
| 23 | \( 1 - 5.84T + 23T^{2} \) |
| 29 | \( 1 - 4.23T + 29T^{2} \) |
| 31 | \( 1 + 7.28T + 31T^{2} \) |
| 37 | \( 1 + 10.4T + 37T^{2} \) |
| 41 | \( 1 - 2.25T + 41T^{2} \) |
| 43 | \( 1 - 0.913T + 43T^{2} \) |
| 47 | \( 1 - 2.09T + 47T^{2} \) |
| 53 | \( 1 - 1.08T + 53T^{2} \) |
| 59 | \( 1 - 12.3T + 59T^{2} \) |
| 61 | \( 1 + 7.51T + 61T^{2} \) |
| 67 | \( 1 - 15.6T + 67T^{2} \) |
| 71 | \( 1 + 10.0T + 71T^{2} \) |
| 73 | \( 1 + 15.0T + 73T^{2} \) |
| 79 | \( 1 + 11.7T + 79T^{2} \) |
| 83 | \( 1 + 7.42T + 83T^{2} \) |
| 89 | \( 1 - 11.1T + 89T^{2} \) |
| 97 | \( 1 - 14.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.625073317354607586921494520398, −7.40660935776019911303375777023, −6.96222868237090385050151852220, −5.99927294328312235150368730757, −5.45555404265143808792546031198, −4.92951315860804532522411576727, −3.78237097155055138308878084879, −3.11120835458527049149818695787, −2.45972492130101111395531131123, −1.45926003741002433156416020863,
1.45926003741002433156416020863, 2.45972492130101111395531131123, 3.11120835458527049149818695787, 3.78237097155055138308878084879, 4.92951315860804532522411576727, 5.45555404265143808792546031198, 5.99927294328312235150368730757, 6.96222868237090385050151852220, 7.40660935776019911303375777023, 8.625073317354607586921494520398