Properties

Label 2-3528-7.2-c1-0-9
Degree $2$
Conductor $3528$
Sign $0.266 - 0.963i$
Analytic cond. $28.1712$
Root an. cond. $5.30765$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 1.73i)5-s + (−1 − 1.73i)11-s − 2·13-s + (3 + 5.19i)17-s + (−2 + 3.46i)19-s + (−3 + 5.19i)23-s + (0.500 + 0.866i)25-s + (−2 − 3.46i)31-s + (−5 + 8.66i)37-s − 2·41-s − 4·43-s + (2 − 3.46i)47-s + (6 + 10.3i)53-s − 3.99·55-s + (6 + 10.3i)59-s + ⋯
L(s)  = 1  + (0.447 − 0.774i)5-s + (−0.301 − 0.522i)11-s − 0.554·13-s + (0.727 + 1.26i)17-s + (−0.458 + 0.794i)19-s + (−0.625 + 1.08i)23-s + (0.100 + 0.173i)25-s + (−0.359 − 0.622i)31-s + (−0.821 + 1.42i)37-s − 0.312·41-s − 0.609·43-s + (0.291 − 0.505i)47-s + (0.824 + 1.42i)53-s − 0.539·55-s + (0.781 + 1.35i)59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3528\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.266 - 0.963i$
Analytic conductor: \(28.1712\)
Root analytic conductor: \(5.30765\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3528} (3313, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3528,\ (\ :1/2),\ 0.266 - 0.963i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.323230736\)
\(L(\frac12)\) \(\approx\) \(1.323230736\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2 - 3.46i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (5 - 8.66i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (-2 + 3.46i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-6 - 10.3i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3 + 5.19i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 14T + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 16T + 83T^{2} \)
89 \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.681527256123848456916835176163, −8.061994463765503089967364434994, −7.40466563012202686079955700986, −6.28760488521362731229621087702, −5.66938616783286731043020482749, −5.10688092101081822765516915254, −4.04876327244016960146224424850, −3.31285065771985867458379327118, −2.03615360149645158976430055265, −1.22384112172813856586386458748, 0.39515998465855833571210663598, 2.09736509449675253963484815553, 2.63980110593827424901677498510, 3.62441852098118416003424704394, 4.75932387608012061385097593670, 5.29026900721562383130903797779, 6.32461466273429206218829640833, 6.99294442133662316984318548358, 7.45652547754273956512006153005, 8.456915672812888172534004603436

Graph of the $Z$-function along the critical line