Properties

Label 2-3528-1.1-c1-0-6
Degree $2$
Conductor $3528$
Sign $1$
Analytic cond. $28.1712$
Root an. cond. $5.30765$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·11-s − 2·13-s + 6·17-s − 2·19-s + 6·23-s − 4·25-s + 3·29-s − 5·31-s − 2·37-s + 8·41-s − 4·43-s + 4·47-s − 9·53-s + 5·55-s − 3·59-s + 12·61-s + 2·65-s + 2·67-s + 8·71-s + 14·73-s + 79-s + 17·83-s − 6·85-s + 18·89-s + 2·95-s − 3·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.50·11-s − 0.554·13-s + 1.45·17-s − 0.458·19-s + 1.25·23-s − 4/5·25-s + 0.557·29-s − 0.898·31-s − 0.328·37-s + 1.24·41-s − 0.609·43-s + 0.583·47-s − 1.23·53-s + 0.674·55-s − 0.390·59-s + 1.53·61-s + 0.248·65-s + 0.244·67-s + 0.949·71-s + 1.63·73-s + 0.112·79-s + 1.86·83-s − 0.650·85-s + 1.90·89-s + 0.205·95-s − 0.304·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3528\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(28.1712\)
Root analytic conductor: \(5.30765\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3528} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3528,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.313364347\)
\(L(\frac12)\) \(\approx\) \(1.313364347\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 17 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.369918761466630880298894604371, −7.77771197292795900244599361068, −7.34304996635694380096313509714, −6.33942017831400936799505022289, −5.32671410671974924764523850134, −4.99021165093168935165425234307, −3.81956195187003903134398581317, −3.02836498850616989097954644520, −2.13761465123081612427304168009, −0.65546615564291070885369388619, 0.65546615564291070885369388619, 2.13761465123081612427304168009, 3.02836498850616989097954644520, 3.81956195187003903134398581317, 4.99021165093168935165425234307, 5.32671410671974924764523850134, 6.33942017831400936799505022289, 7.34304996635694380096313509714, 7.77771197292795900244599361068, 8.369918761466630880298894604371

Graph of the $Z$-function along the critical line