Properties

Label 2-3528-1.1-c1-0-32
Degree $2$
Conductor $3528$
Sign $-1$
Analytic cond. $28.1712$
Root an. cond. $5.30765$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·11-s + 2·13-s + 2·17-s + 4·19-s + 8·23-s − 25-s − 6·29-s − 8·31-s + 6·37-s − 6·41-s + 4·43-s + 2·53-s + 8·55-s + 4·59-s + 2·61-s − 4·65-s − 4·67-s − 8·71-s − 10·73-s − 8·79-s − 4·83-s − 4·85-s − 6·89-s − 8·95-s − 2·97-s − 18·101-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.20·11-s + 0.554·13-s + 0.485·17-s + 0.917·19-s + 1.66·23-s − 1/5·25-s − 1.11·29-s − 1.43·31-s + 0.986·37-s − 0.937·41-s + 0.609·43-s + 0.274·53-s + 1.07·55-s + 0.520·59-s + 0.256·61-s − 0.496·65-s − 0.488·67-s − 0.949·71-s − 1.17·73-s − 0.900·79-s − 0.439·83-s − 0.433·85-s − 0.635·89-s − 0.820·95-s − 0.203·97-s − 1.79·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3528\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(28.1712\)
Root analytic conductor: \(5.30765\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3528} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3528,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.070493008159816865665193495447, −7.48262505518830506099686358492, −7.01507823160614642101417797126, −5.68882761687599646139467960885, −5.31393935703508661243014911411, −4.26006602995316384735017711370, −3.44517807903584076206897070581, −2.73151126809740041559980819161, −1.33234813740225181579568980351, 0, 1.33234813740225181579568980351, 2.73151126809740041559980819161, 3.44517807903584076206897070581, 4.26006602995316384735017711370, 5.31393935703508661243014911411, 5.68882761687599646139467960885, 7.01507823160614642101417797126, 7.48262505518830506099686358492, 8.070493008159816865665193495447

Graph of the $Z$-function along the critical line