Properties

Label 2-3528-1.1-c1-0-23
Degree $2$
Conductor $3528$
Sign $1$
Analytic cond. $28.1712$
Root an. cond. $5.30765$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.41·5-s − 0.828·11-s + 4.24·13-s + 7.41·17-s − 6.82·19-s + 4.82·23-s + 6.65·25-s − 2.82·29-s + 2.82·31-s − 1.65·37-s + 10.2·41-s − 11.3·43-s − 4.48·47-s + 2·53-s − 2.82·55-s + 8.48·59-s − 11.0·61-s + 14.4·65-s + 11.3·67-s + 10.4·71-s − 7.75·73-s + 13.6·79-s − 4·83-s + 25.3·85-s + 5.75·89-s − 23.3·95-s + 0.242·97-s + ⋯
L(s)  = 1  + 1.52·5-s − 0.249·11-s + 1.17·13-s + 1.79·17-s − 1.56·19-s + 1.00·23-s + 1.33·25-s − 0.525·29-s + 0.508·31-s − 0.272·37-s + 1.59·41-s − 1.72·43-s − 0.654·47-s + 0.274·53-s − 0.381·55-s + 1.10·59-s − 1.41·61-s + 1.79·65-s + 1.38·67-s + 1.24·71-s − 0.907·73-s + 1.53·79-s − 0.439·83-s + 2.74·85-s + 0.610·89-s − 2.39·95-s + 0.0246·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3528\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(28.1712\)
Root analytic conductor: \(5.30765\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3528} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3528,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.841243976\)
\(L(\frac12)\) \(\approx\) \(2.841243976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3.41T + 5T^{2} \)
11 \( 1 + 0.828T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 - 7.41T + 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 - 4.82T + 23T^{2} \)
29 \( 1 + 2.82T + 29T^{2} \)
31 \( 1 - 2.82T + 31T^{2} \)
37 \( 1 + 1.65T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 + 4.48T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 - 11.3T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 + 7.75T + 73T^{2} \)
79 \( 1 - 13.6T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 5.75T + 89T^{2} \)
97 \( 1 - 0.242T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.567815856676604029808553655002, −8.007538356040298577271433961624, −6.87186931023361883495282996213, −6.24680512309991632005532449435, −5.63676407497423712376550962060, −4.99852055127935549907253676068, −3.82657241877912353514283211245, −2.92304816601555277403251884257, −1.94125724032394113444315883842, −1.07659706948853737682306136002, 1.07659706948853737682306136002, 1.94125724032394113444315883842, 2.92304816601555277403251884257, 3.82657241877912353514283211245, 4.99852055127935549907253676068, 5.63676407497423712376550962060, 6.24680512309991632005532449435, 6.87186931023361883495282996213, 8.007538356040298577271433961624, 8.567815856676604029808553655002

Graph of the $Z$-function along the critical line