L(s) = 1 | + 5-s + 9-s − 11-s + 25-s + 2·31-s + 45-s − 49-s − 55-s + 2·59-s − 2·71-s + 81-s − 2·89-s − 99-s + ⋯ |
L(s) = 1 | + 5-s + 9-s − 11-s + 25-s + 2·31-s + 45-s − 49-s − 55-s + 2·59-s − 2·71-s + 81-s − 2·89-s − 99-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.613417514\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.613417514\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 + T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 + T )^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.719266822540352489500311032610, −8.057758849817367764513826143291, −7.18769592256208494909565236663, −6.54022943116205175121072980883, −5.74619922537626995166740287438, −4.97093021531004683579711418447, −4.29664478890215556483001441402, −3.04559805417498339078981594820, −2.25726698986072320902260133286, −1.21245303565018344121967747062,
1.21245303565018344121967747062, 2.25726698986072320902260133286, 3.04559805417498339078981594820, 4.29664478890215556483001441402, 4.97093021531004683579711418447, 5.74619922537626995166740287438, 6.54022943116205175121072980883, 7.18769592256208494909565236663, 8.057758849817367764513826143291, 8.719266822540352489500311032610