L(s) = 1 | + (−0.809 − 0.587i)5-s + (−0.587 + 1.80i)7-s + (0.809 − 0.587i)9-s + (−0.951 − 0.309i)11-s + (−0.690 − 0.951i)13-s + (0.363 + 1.11i)19-s − 0.618i·23-s + (0.309 + 0.951i)25-s + (1.53 − 1.11i)35-s + (−0.5 + 1.53i)37-s + (−1.80 + 0.587i)41-s − 45-s + (−1.53 + 0.5i)47-s + (−2.11 − 1.53i)49-s + (−0.5 + 0.363i)53-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)5-s + (−0.587 + 1.80i)7-s + (0.809 − 0.587i)9-s + (−0.951 − 0.309i)11-s + (−0.690 − 0.951i)13-s + (0.363 + 1.11i)19-s − 0.618i·23-s + (0.309 + 0.951i)25-s + (1.53 − 1.11i)35-s + (−0.5 + 1.53i)37-s + (−1.80 + 0.587i)41-s − 45-s + (−1.53 + 0.5i)47-s + (−2.11 − 1.53i)49-s + (−0.5 + 0.363i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2213900191\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2213900191\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.690 + 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 0.618iT - T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (1.80 - 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (1.53 - 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.991745386828091546275600752095, −8.178490755888067850882252197532, −7.954406517926183218536766175052, −6.79143048942675950754504942031, −6.02981954177379550877287018164, −5.21691992678919890162762594731, −4.72370376311874514449753146222, −3.33132410371803795576221888853, −2.97747101161077928289439014933, −1.61942926615745129772109401893,
0.12453172251733138432658917207, 1.77257610913343974952496459601, 2.98984149536575396436818030546, 3.81029920552868576433090465428, 4.50206319983241557446183763533, 5.11263138294175619117778087785, 6.68497614275668135389289211420, 7.06903293584078626309176479967, 7.45480454027527391630169182641, 8.114994119188780778464418034017