L(s) = 1 | + (0.309 + 0.951i)5-s + (−0.951 − 0.690i)7-s + (−0.309 + 0.951i)9-s + (0.587 − 0.809i)11-s + (−1.80 − 0.587i)13-s + (−1.53 + 1.11i)19-s − 1.61i·23-s + (−0.809 + 0.587i)25-s + (0.363 − 1.11i)35-s + (−0.5 − 0.363i)37-s + (−0.690 − 0.951i)41-s − 0.999·45-s + (−0.363 − 0.5i)47-s + (0.118 + 0.363i)49-s + (−0.5 + 1.53i)53-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)5-s + (−0.951 − 0.690i)7-s + (−0.309 + 0.951i)9-s + (0.587 − 0.809i)11-s + (−1.80 − 0.587i)13-s + (−1.53 + 1.11i)19-s − 1.61i·23-s + (−0.809 + 0.587i)25-s + (0.363 − 1.11i)35-s + (−0.5 − 0.363i)37-s + (−0.690 − 0.951i)41-s − 0.999·45-s + (−0.363 − 0.5i)47-s + (0.118 + 0.363i)49-s + (−0.5 + 1.53i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08634024136\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08634024136\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (-0.587 + 0.809i)T \) |
good | 3 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (0.951 + 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + 1.61iT - T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.690 + 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.363 + 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.363 - 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - 1.61T + T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.344085616291124591863868401332, −7.62114667814236400546327815148, −6.87965719442295528130150732098, −6.31832571328535408389832896029, −5.57015908407817931651899962362, −4.53409651158063403593163881504, −3.63703840961434413446293865198, −2.77824653911763807307119551969, −2.08191842264885314374128726280, −0.04486708043886707124815792540,
1.72166063525341123343706409228, 2.58537468832784104712722878660, 3.64740821405852015648771336528, 4.65423658848805448109996758848, 5.14970145402436156374540998780, 6.28797110387590842193908579796, 6.63281783702625441002335332493, 7.51962951055761828212354483895, 8.614861917888501592962534066601, 9.205147186619553287875954613262