L(s) = 1 | + (0.309 + 0.951i)5-s + (0.951 + 0.690i)7-s + (−0.309 + 0.951i)9-s + (−0.587 + 0.809i)11-s + (−1.80 − 0.587i)13-s + (1.53 − 1.11i)19-s + 1.61i·23-s + (−0.809 + 0.587i)25-s + (−0.363 + 1.11i)35-s + (−0.5 − 0.363i)37-s + (−0.690 − 0.951i)41-s − 0.999·45-s + (0.363 + 0.5i)47-s + (0.118 + 0.363i)49-s + (−0.5 + 1.53i)53-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)5-s + (0.951 + 0.690i)7-s + (−0.309 + 0.951i)9-s + (−0.587 + 0.809i)11-s + (−1.80 − 0.587i)13-s + (1.53 − 1.11i)19-s + 1.61i·23-s + (−0.809 + 0.587i)25-s + (−0.363 + 1.11i)35-s + (−0.5 − 0.363i)37-s + (−0.690 − 0.951i)41-s − 0.999·45-s + (0.363 + 0.5i)47-s + (0.118 + 0.363i)49-s + (−0.5 + 1.53i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.168434031\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.168434031\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (0.587 - 0.809i)T \) |
good | 3 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.951 - 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.61iT - T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.690 + 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - 1.61T + T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.123490768744066148528478445193, −7.959781160173283057690908338185, −7.39614930710868787415647688226, −7.21117070031136654300419357882, −5.69473013127275247080471398722, −5.20131565453995587297396434528, −4.78658345028387825246945887601, −3.20559759854973202297456463790, −2.48780750996050953198178367101, −1.89741411299580832486047724925,
0.65514776815750838012169449112, 1.76636677620376176427605368020, 2.91882231587356650098016040788, 3.97004435382366611396061114442, 4.87517483068462296663195150130, 5.25361022856717361252459816774, 6.23241740294435405812712015713, 7.11723273151184885025095218058, 7.941949097565649792405650482833, 8.398184041801162740642601044531