| L(s) = 1 | + 3-s + 5-s + 7-s − 2·9-s − 11-s − 2·13-s + 15-s − 3·17-s − 19-s + 21-s − 6·23-s + 25-s − 5·27-s + 9·29-s − 5·31-s − 33-s + 35-s − 5·37-s − 2·39-s − 6·41-s + 8·43-s − 2·45-s − 6·47-s − 6·49-s − 3·51-s − 9·53-s − 55-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.447·5-s + 0.377·7-s − 2/3·9-s − 0.301·11-s − 0.554·13-s + 0.258·15-s − 0.727·17-s − 0.229·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s − 0.962·27-s + 1.67·29-s − 0.898·31-s − 0.174·33-s + 0.169·35-s − 0.821·37-s − 0.320·39-s − 0.937·41-s + 1.21·43-s − 0.298·45-s − 0.875·47-s − 6/7·49-s − 0.420·51-s − 1.23·53-s − 0.134·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 5 | \( 1 - T \) | |
| 11 | \( 1 + T \) | |
| good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab |
| 7 | \( 1 - T + p T^{2} \) | 1.7.ab |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 17 | \( 1 + 3 T + p T^{2} \) | 1.17.d |
| 19 | \( 1 + T + p T^{2} \) | 1.19.b |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj |
| 31 | \( 1 + 5 T + p T^{2} \) | 1.31.f |
| 37 | \( 1 + 5 T + p T^{2} \) | 1.37.f |
| 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g |
| 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai |
| 47 | \( 1 + 6 T + p T^{2} \) | 1.47.g |
| 53 | \( 1 + 9 T + p T^{2} \) | 1.53.j |
| 59 | \( 1 - 6 T + p T^{2} \) | 1.59.ag |
| 61 | \( 1 + 5 T + p T^{2} \) | 1.61.f |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 - 9 T + p T^{2} \) | 1.71.aj |
| 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k |
| 79 | \( 1 + 14 T + p T^{2} \) | 1.79.o |
| 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g |
| 89 | \( 1 + 15 T + p T^{2} \) | 1.89.p |
| 97 | \( 1 - 8 T + p T^{2} \) | 1.97.ai |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.359905758955154812622818277635, −7.60721361131902737953934891116, −6.70841260421052853926206891270, −5.96059410754679424594437071577, −5.13770258736022686543967024143, −4.38938726799823337578544100024, −3.31382801719037037726039149167, −2.47790026863491699487921323501, −1.74741114392745362807989856170, 0,
1.74741114392745362807989856170, 2.47790026863491699487921323501, 3.31382801719037037726039149167, 4.38938726799823337578544100024, 5.13770258736022686543967024143, 5.96059410754679424594437071577, 6.70841260421052853926206891270, 7.60721361131902737953934891116, 8.359905758955154812622818277635