Properties

Label 2-3520-1.1-c1-0-73
Degree $2$
Conductor $3520$
Sign $-1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 7-s − 2·9-s − 11-s − 2·13-s + 15-s − 3·17-s − 19-s + 21-s − 6·23-s + 25-s − 5·27-s + 9·29-s − 5·31-s − 33-s + 35-s − 5·37-s − 2·39-s − 6·41-s + 8·43-s − 2·45-s − 6·47-s − 6·49-s − 3·51-s − 9·53-s − 55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.377·7-s − 2/3·9-s − 0.301·11-s − 0.554·13-s + 0.258·15-s − 0.727·17-s − 0.229·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s − 0.962·27-s + 1.67·29-s − 0.898·31-s − 0.174·33-s + 0.169·35-s − 0.821·37-s − 0.320·39-s − 0.937·41-s + 1.21·43-s − 0.298·45-s − 0.875·47-s − 6/7·49-s − 0.420·51-s − 1.23·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.359905758955154812622818277635, −7.60721361131902737953934891116, −6.70841260421052853926206891270, −5.96059410754679424594437071577, −5.13770258736022686543967024143, −4.38938726799823337578544100024, −3.31382801719037037726039149167, −2.47790026863491699487921323501, −1.74741114392745362807989856170, 0, 1.74741114392745362807989856170, 2.47790026863491699487921323501, 3.31382801719037037726039149167, 4.38938726799823337578544100024, 5.13770258736022686543967024143, 5.96059410754679424594437071577, 6.70841260421052853926206891270, 7.60721361131902737953934891116, 8.359905758955154812622818277635

Graph of the $Z$-function along the critical line