L(s) = 1 | + 3·3-s − 5-s − 7-s + 6·9-s − 11-s + 6·13-s − 3·15-s + 3·17-s − 5·19-s − 3·21-s + 2·23-s + 25-s + 9·27-s + 5·29-s − 5·31-s − 3·33-s + 35-s + 37-s + 18·39-s − 2·41-s + 12·43-s − 6·45-s + 2·47-s − 6·49-s + 9·51-s + 13·53-s + 55-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 0.447·5-s − 0.377·7-s + 2·9-s − 0.301·11-s + 1.66·13-s − 0.774·15-s + 0.727·17-s − 1.14·19-s − 0.654·21-s + 0.417·23-s + 1/5·25-s + 1.73·27-s + 0.928·29-s − 0.898·31-s − 0.522·33-s + 0.169·35-s + 0.164·37-s + 2.88·39-s − 0.312·41-s + 1.82·43-s − 0.894·45-s + 0.291·47-s − 6/7·49-s + 1.26·51-s + 1.78·53-s + 0.134·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.527275751\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.527275751\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 - p T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 - 2 T + p T^{2} \) |
| 29 | \( 1 - 5 T + p T^{2} \) |
| 31 | \( 1 + 5 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 - 2 T + p T^{2} \) |
| 53 | \( 1 - 13 T + p T^{2} \) |
| 59 | \( 1 - 2 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 - 16 T + p T^{2} \) |
| 71 | \( 1 + 15 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 2 T + p T^{2} \) |
| 83 | \( 1 + 14 T + p T^{2} \) |
| 89 | \( 1 - 9 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.577871306437421555744697050815, −8.052858222513506482721003367277, −7.30130261697382719713053097000, −6.54896328762949662334583706654, −5.60751523265437801497160027229, −4.30656134851375835942590540371, −3.76278536315558817422557601779, −3.08994448320219221453411011670, −2.24335405466560461610513612156, −1.08481091421535083570784335280,
1.08481091421535083570784335280, 2.24335405466560461610513612156, 3.08994448320219221453411011670, 3.76278536315558817422557601779, 4.30656134851375835942590540371, 5.60751523265437801497160027229, 6.54896328762949662334583706654, 7.30130261697382719713053097000, 8.052858222513506482721003367277, 8.577871306437421555744697050815