L(s) = 1 | + (0.784 + 0.452i)2-s + (−0.589 − 1.02i)4-s + (−1.94 + 1.12i)5-s + (−2.97 − 1.71i)7-s − 2.87i·8-s − 2.03·10-s + (−3.20 − 1.84i)11-s + (0.351 − 3.58i)13-s + (−1.55 − 2.69i)14-s + (0.124 − 0.214i)16-s + 4.21·17-s + 4.25i·19-s + (2.29 + 1.32i)20-s + (−1.67 − 2.89i)22-s + (−1.89 − 3.27i)23-s + ⋯ |
L(s) = 1 | + (0.554 + 0.320i)2-s + (−0.294 − 0.510i)4-s + (−0.868 + 0.501i)5-s + (−1.12 − 0.649i)7-s − 1.01i·8-s − 0.642·10-s + (−0.965 − 0.557i)11-s + (0.0975 − 0.995i)13-s + (−0.415 − 0.720i)14-s + (0.0310 − 0.0537i)16-s + 1.02·17-s + 0.975i·19-s + (0.512 + 0.295i)20-s + (−0.356 − 0.618i)22-s + (−0.394 − 0.683i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.515 + 0.856i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.515 + 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.334532 - 0.591509i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.334532 - 0.591509i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.351 + 3.58i)T \) |
good | 2 | \( 1 + (-0.784 - 0.452i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.94 - 1.12i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.97 + 1.71i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.20 + 1.84i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 4.21T + 17T^{2} \) |
| 19 | \( 1 - 4.25iT - 19T^{2} \) |
| 23 | \( 1 + (1.89 + 3.27i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.18 + 2.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.37 - 3.67i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.49iT - 37T^{2} \) |
| 41 | \( 1 + (-6.86 + 3.96i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.450 - 0.779i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.80 - 2.77i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.59T + 53T^{2} \) |
| 59 | \( 1 + (4.44 - 2.56i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.50 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.7 + 6.75i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.65iT - 71T^{2} \) |
| 73 | \( 1 + 5.45iT - 73T^{2} \) |
| 79 | \( 1 + (5.46 - 9.47i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.465 + 0.268i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 5.75iT - 89T^{2} \) |
| 97 | \( 1 + (5.87 + 3.39i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89052806767761926977660973083, −10.39067297499753277343817398400, −9.553298365248154027062140123700, −8.057041525908352322487220849222, −7.32221414283122967898612953956, −6.16587747929141334879441684422, −5.39563069847212672213784946644, −3.87955982687315163177543373015, −3.23994196067971516154054373590, −0.38327320351699233072575498916,
2.56748815259579748487335092194, 3.65787466478597023027815731487, 4.64944199627838093607359550861, 5.69369707281869709358772865717, 7.17267461699176377971963431559, 8.058445776308486321070974994990, 9.023689137212457321144248262711, 9.823655409984945848864015438241, 11.28276206861277301431372931371, 11.97658906039578654584241481263