L(s) = 1 | + 4i·2-s − 3i·3-s − 16·4-s + 12·6-s − 49i·7-s − 64i·8-s + 234·9-s + 405·11-s + 48i·12-s − 391i·13-s + 196·14-s + 256·16-s − 999i·17-s + 936i·18-s − 2.34e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.192i·3-s − 0.5·4-s + 0.136·6-s − 0.377i·7-s − 0.353i·8-s + 0.962·9-s + 1.00·11-s + 0.0962i·12-s − 0.641i·13-s + 0.267·14-s + 0.250·16-s − 0.838i·17-s + 0.680i·18-s − 1.48·19-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(350s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
350
= 2⋅52⋅7
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
56.1343 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ350(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 350, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.551456411 |
L(21) |
≈ |
1.551456411 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 7 | 1+49iT |
good | 3 | 1+3iT−243T2 |
| 11 | 1−405T+1.61e5T2 |
| 13 | 1+391iT−3.71e5T2 |
| 17 | 1+999iT−1.41e6T2 |
| 19 | 1+2.34e3T+2.47e6T2 |
| 23 | 1−2.43e3iT−6.43e6T2 |
| 29 | 1+8.25e3T+2.05e7T2 |
| 31 | 1−4.01e3T+2.86e7T2 |
| 37 | 1−7.04e3iT−6.93e7T2 |
| 41 | 1−3.33e3T+1.15e8T2 |
| 43 | 1+2.35e4iT−1.47e8T2 |
| 47 | 1+1.03e4iT−2.29e8T2 |
| 53 | 1−3.08e3iT−4.18e8T2 |
| 59 | 1−1.88e4T+7.14e8T2 |
| 61 | 1−2.16e4T+8.44e8T2 |
| 67 | 1+5.21e4iT−1.35e9T2 |
| 71 | 1+2.85e4T+1.80e9T2 |
| 73 | 1+7.03e4iT−2.07e9T2 |
| 79 | 1+5.88e4T+3.07e9T2 |
| 83 | 1−756iT−3.93e9T2 |
| 89 | 1+1.35e5T+5.58e9T2 |
| 97 | 1+1.10e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.30746709885766710239771793117, −9.500413462088595009244174372353, −8.530502277944782146789754948484, −7.41624060770527472970787346996, −6.84495175321044538955280963000, −5.75913212469939274370912961172, −4.52223876740094904572226963669, −3.61827897192229791230810929295, −1.74760237765255382078927926585, −0.41671397945096206055179035081,
1.29871180177463202266503025227, 2.28889899083210710493360341396, 3.93556482073802739511391746779, 4.41217257539128596325672669537, 5.97913053468422386248293348860, 6.92158222362119014219056018762, 8.307446878714609250873939286612, 9.147879500394021129993785859046, 9.924204737832344596010864951707, 10.87524964580864360048042156699