Properties

Label 2-350-5.4-c5-0-34
Degree $2$
Conductor $350$
Sign $0.447 + 0.894i$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s + 10i·3-s − 16·4-s − 40·6-s − 49i·7-s − 64i·8-s + 143·9-s − 336·11-s − 160i·12-s + 584i·13-s + 196·14-s + 256·16-s + 1.45e3i·17-s + 572i·18-s − 470·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.641i·3-s − 0.5·4-s − 0.453·6-s − 0.377i·7-s − 0.353i·8-s + 0.588·9-s − 0.837·11-s − 0.320i·12-s + 0.958i·13-s + 0.267·14-s + 0.250·16-s + 1.22i·17-s + 0.416i·18-s − 0.298·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3936288571\)
\(L(\frac12)\) \(\approx\) \(0.3936288571\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
5 \( 1 \)
7 \( 1 + 49iT \)
good3 \( 1 - 10iT - 243T^{2} \)
11 \( 1 + 336T + 1.61e5T^{2} \)
13 \( 1 - 584iT - 3.71e5T^{2} \)
17 \( 1 - 1.45e3iT - 1.41e6T^{2} \)
19 \( 1 + 470T + 2.47e6T^{2} \)
23 \( 1 + 4.20e3iT - 6.43e6T^{2} \)
29 \( 1 + 4.86e3T + 2.05e7T^{2} \)
31 \( 1 + 7.37e3T + 2.86e7T^{2} \)
37 \( 1 + 1.43e4iT - 6.93e7T^{2} \)
41 \( 1 - 6.22e3T + 1.15e8T^{2} \)
43 \( 1 - 3.70e3iT - 1.47e8T^{2} \)
47 \( 1 - 1.81e3iT - 2.29e8T^{2} \)
53 \( 1 + 3.72e4iT - 4.18e8T^{2} \)
59 \( 1 + 3.43e4T + 7.14e8T^{2} \)
61 \( 1 - 2.44e4T + 8.44e8T^{2} \)
67 \( 1 - 1.74e4iT - 1.35e9T^{2} \)
71 \( 1 - 2.82e4T + 1.80e9T^{2} \)
73 \( 1 - 3.60e3iT - 2.07e9T^{2} \)
79 \( 1 + 4.28e4T + 3.07e9T^{2} \)
83 \( 1 + 3.52e4iT - 3.93e9T^{2} \)
89 \( 1 + 2.67e4T + 5.58e9T^{2} \)
97 \( 1 - 1.69e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46145592128473862379116065917, −9.507919612076122144680995630556, −8.637798875245618110953691044252, −7.58230792219091195523749870964, −6.71239310414796954393900770215, −5.58611539466392351393877406554, −4.45528708118665863259116259482, −3.78753495234827291574518872787, −1.92521932175293161940504432964, −0.10424926927285969967064912207, 1.20182873494173093676577814337, 2.36075563566662616340105700767, 3.43845076254983193078730196317, 4.92062754587351326930877978929, 5.79951012264723712169761647065, 7.30815962794208799690013151706, 7.86494831696282535382081494915, 9.156521651098255685372791119377, 9.942312286694969332811029044726, 10.91482675832083380433318711608

Graph of the $Z$-function along the critical line