L(s) = 1 | − 4i·2-s + 3i·3-s − 16·4-s + 12·6-s + 49i·7-s + 64i·8-s + 234·9-s + 405·11-s − 48i·12-s + 391i·13-s + 196·14-s + 256·16-s + 999i·17-s − 936i·18-s − 2.34e3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.192i·3-s − 0.5·4-s + 0.136·6-s + 0.377i·7-s + 0.353i·8-s + 0.962·9-s + 1.00·11-s − 0.0962i·12-s + 0.641i·13-s + 0.267·14-s + 0.250·16-s + 0.838i·17-s − 0.680i·18-s − 1.48·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.551456411\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.551456411\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 49iT \) |
good | 3 | \( 1 - 3iT - 243T^{2} \) |
| 11 | \( 1 - 405T + 1.61e5T^{2} \) |
| 13 | \( 1 - 391iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 999iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 2.34e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.43e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 8.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 4.01e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 7.04e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 3.33e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 2.35e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.03e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 3.08e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 1.88e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.16e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 5.21e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.85e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 7.03e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 5.88e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 756iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 1.35e5T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.10e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87524964580864360048042156699, −9.924204737832344596010864951707, −9.147879500394021129993785859046, −8.307446878714609250873939286612, −6.92158222362119014219056018762, −5.97913053468422386248293348860, −4.41217257539128596325672669537, −3.93556482073802739511391746779, −2.28889899083210710493360341396, −1.29871180177463202266503025227,
0.41671397945096206055179035081, 1.74760237765255382078927926585, 3.61827897192229791230810929295, 4.52223876740094904572226963669, 5.75913212469939274370912961172, 6.84495175321044538955280963000, 7.41624060770527472970787346996, 8.530502277944782146789754948484, 9.500413462088595009244174372353, 10.30746709885766710239771793117