Properties

Label 2-350-1.1-c5-0-45
Degree $2$
Conductor $350$
Sign $-1$
Analytic cond. $56.1343$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 9·3-s + 16·4-s + 36·6-s + 49·7-s + 64·8-s − 162·9-s − 187·11-s + 144·12-s − 627·13-s + 196·14-s + 256·16-s − 1.81e3·17-s − 648·18-s + 258·19-s + 441·21-s − 748·22-s − 2.97e3·23-s + 576·24-s − 2.50e3·26-s − 3.64e3·27-s + 784·28-s + 1.29e3·29-s + 1.91e3·31-s + 1.02e3·32-s − 1.68e3·33-s − 7.25e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.465·11-s + 0.288·12-s − 1.02·13-s + 0.267·14-s + 1/4·16-s − 1.52·17-s − 0.471·18-s + 0.163·19-s + 0.218·21-s − 0.329·22-s − 1.17·23-s + 0.204·24-s − 0.727·26-s − 0.962·27-s + 0.188·28-s + 0.286·29-s + 0.358·31-s + 0.176·32-s − 0.269·33-s − 1.07·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(56.1343\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
5 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 - p^{2} T + p^{5} T^{2} \)
11 \( 1 + 17 p T + p^{5} T^{2} \)
13 \( 1 + 627 T + p^{5} T^{2} \)
17 \( 1 + 1813 T + p^{5} T^{2} \)
19 \( 1 - 258 T + p^{5} T^{2} \)
23 \( 1 + 2970 T + p^{5} T^{2} \)
29 \( 1 - 1299 T + p^{5} T^{2} \)
31 \( 1 - 1916 T + p^{5} T^{2} \)
37 \( 1 + 6578 T + p^{5} T^{2} \)
41 \( 1 - 6676 T + p^{5} T^{2} \)
43 \( 1 + 3178 T + p^{5} T^{2} \)
47 \( 1 - 22001 T + p^{5} T^{2} \)
53 \( 1 + 26168 T + p^{5} T^{2} \)
59 \( 1 - 3932 T + p^{5} T^{2} \)
61 \( 1 + 48740 T + p^{5} T^{2} \)
67 \( 1 - 44832 T + p^{5} T^{2} \)
71 \( 1 - 63736 T + p^{5} T^{2} \)
73 \( 1 + 60470 T + p^{5} T^{2} \)
79 \( 1 + 43721 T + p^{5} T^{2} \)
83 \( 1 + 1172 p T + p^{5} T^{2} \)
89 \( 1 - 45560 T + p^{5} T^{2} \)
97 \( 1 - 57295 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32087095076289790983231628339, −9.184108328565528352039135538973, −8.226368518473944405162280106681, −7.37510085643500339398729496814, −6.20208332352772434250961020667, −5.11562471425620453699527959507, −4.16046623414305192832407991512, −2.81592819782801204371212381755, −2.04452629479928993111322860698, 0, 2.04452629479928993111322860698, 2.81592819782801204371212381755, 4.16046623414305192832407991512, 5.11562471425620453699527959507, 6.20208332352772434250961020667, 7.37510085643500339398729496814, 8.226368518473944405162280106681, 9.184108328565528352039135538973, 10.32087095076289790983231628339

Graph of the $Z$-function along the critical line