L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s − 2·9-s + 3·11-s − 12-s − 2·13-s + 14-s + 16-s − 3·17-s + 2·18-s − 7·19-s + 21-s − 3·22-s + 24-s + 2·26-s + 5·27-s − 28-s − 6·29-s − 4·31-s − 32-s − 3·33-s + 3·34-s − 2·36-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.904·11-s − 0.288·12-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.727·17-s + 0.471·18-s − 1.60·19-s + 0.218·21-s − 0.639·22-s + 0.204·24-s + 0.392·26-s + 0.962·27-s − 0.188·28-s − 1.11·29-s − 0.718·31-s − 0.176·32-s − 0.522·33-s + 0.514·34-s − 1/3·36-s + ⋯ |
Λ(s)=(=(350s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(350s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 7 | 1+T |
good | 3 | 1+T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+9T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+5T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97618644248142866152725079598, −10.18616620126561124117671237886, −9.056880838216350511563756479245, −8.489865387400252022087843283105, −7.02864082573576697328686349834, −6.40152272675796392235796567725, −5.26770803610804114861303773339, −3.76060769659553506276694871497, −2.12269688406492296074462119899, 0,
2.12269688406492296074462119899, 3.76060769659553506276694871497, 5.26770803610804114861303773339, 6.40152272675796392235796567725, 7.02864082573576697328686349834, 8.489865387400252022087843283105, 9.056880838216350511563756479245, 10.18616620126561124117671237886, 10.97618644248142866152725079598