Properties

Label 2-350-1.1-c1-0-4
Degree 22
Conductor 350350
Sign 11
Analytic cond. 2.794762.79476
Root an. cond. 1.671751.67175
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 3·6-s + 7-s − 8-s + 6·9-s − 5·11-s + 3·12-s + 6·13-s − 14-s + 16-s + 17-s − 6·18-s − 3·19-s + 3·21-s + 5·22-s − 3·24-s − 6·26-s + 9·27-s + 28-s − 6·29-s − 4·31-s − 32-s − 15·33-s − 34-s + 6·36-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.377·7-s − 0.353·8-s + 2·9-s − 1.50·11-s + 0.866·12-s + 1.66·13-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 1.41·18-s − 0.688·19-s + 0.654·21-s + 1.06·22-s − 0.612·24-s − 1.17·26-s + 1.73·27-s + 0.188·28-s − 1.11·29-s − 0.718·31-s − 0.176·32-s − 2.61·33-s − 0.171·34-s + 36-s + ⋯

Functional equation

Λ(s)=(350s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(350s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 350350    =    25272 \cdot 5^{2} \cdot 7
Sign: 11
Analytic conductor: 2.794762.79476
Root analytic conductor: 1.671751.67175
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 350, ( :1/2), 1)(2,\ 350,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.7170877781.717087778
L(12)L(\frac12) \approx 1.7170877781.717087778
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
5 1 1
7 1T 1 - T
good3 1pT+pT2 1 - p T + p T^{2}
11 1+5T+pT2 1 + 5 T + p T^{2}
13 16T+pT2 1 - 6 T + p T^{2}
17 1T+pT2 1 - T + p T^{2}
19 1+3T+pT2 1 + 3 T + p T^{2}
23 1+pT2 1 + p T^{2}
29 1+6T+pT2 1 + 6 T + p T^{2}
31 1+4T+pT2 1 + 4 T + p T^{2}
37 1+8T+pT2 1 + 8 T + p T^{2}
41 111T+pT2 1 - 11 T + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 1+2T+pT2 1 + 2 T + p T^{2}
53 1+4T+pT2 1 + 4 T + p T^{2}
59 14T+pT2 1 - 4 T + p T^{2}
61 1+2T+pT2 1 + 2 T + p T^{2}
67 1+9T+pT2 1 + 9 T + p T^{2}
71 1+10T+pT2 1 + 10 T + p T^{2}
73 17T+pT2 1 - 7 T + p T^{2}
79 1+2T+pT2 1 + 2 T + p T^{2}
83 1+11T+pT2 1 + 11 T + p T^{2}
89 1+11T+pT2 1 + 11 T + p T^{2}
97 110T+pT2 1 - 10 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.04646116195134762631293439185, −10.47861198024909662647793577652, −9.334015251861622392606705723868, −8.632062123138897033456433282966, −7.982704647601194275162559588174, −7.28202966725007180028492050863, −5.74372284090584252527668413358, −4.02569848626692601267512154263, −2.90932005195183109143742073385, −1.76448136119712918970498775230, 1.76448136119712918970498775230, 2.90932005195183109143742073385, 4.02569848626692601267512154263, 5.74372284090584252527668413358, 7.28202966725007180028492050863, 7.982704647601194275162559588174, 8.632062123138897033456433282966, 9.334015251861622392606705723868, 10.47861198024909662647793577652, 11.04646116195134762631293439185

Graph of the ZZ-function along the critical line