L(s) = 1 | − 2-s + 3·3-s + 4-s − 3·6-s + 7-s − 8-s + 6·9-s − 5·11-s + 3·12-s + 6·13-s − 14-s + 16-s + 17-s − 6·18-s − 3·19-s + 3·21-s + 5·22-s − 3·24-s − 6·26-s + 9·27-s + 28-s − 6·29-s − 4·31-s − 32-s − 15·33-s − 34-s + 6·36-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.377·7-s − 0.353·8-s + 2·9-s − 1.50·11-s + 0.866·12-s + 1.66·13-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 1.41·18-s − 0.688·19-s + 0.654·21-s + 1.06·22-s − 0.612·24-s − 1.17·26-s + 1.73·27-s + 0.188·28-s − 1.11·29-s − 0.718·31-s − 0.176·32-s − 2.61·33-s − 0.171·34-s + 36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.717087778\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.717087778\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 3 | \( 1 - p T + p T^{2} \) |
| 11 | \( 1 + 5 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 - T + p T^{2} \) |
| 19 | \( 1 + 3 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 11 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + 2 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 9 T + p T^{2} \) |
| 71 | \( 1 + 10 T + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 + 2 T + p T^{2} \) |
| 83 | \( 1 + 11 T + p T^{2} \) |
| 89 | \( 1 + 11 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04646116195134762631293439185, −10.47861198024909662647793577652, −9.334015251861622392606705723868, −8.632062123138897033456433282966, −7.982704647601194275162559588174, −7.28202966725007180028492050863, −5.74372284090584252527668413358, −4.02569848626692601267512154263, −2.90932005195183109143742073385, −1.76448136119712918970498775230,
1.76448136119712918970498775230, 2.90932005195183109143742073385, 4.02569848626692601267512154263, 5.74372284090584252527668413358, 7.28202966725007180028492050863, 7.982704647601194275162559588174, 8.632062123138897033456433282966, 9.334015251861622392606705723868, 10.47861198024909662647793577652, 11.04646116195134762631293439185