Properties

Label 2-35-35.34-c14-0-19
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $43.5151$
Root an. cond. $6.59660$
Motivic weight $14$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.03e3·3-s + 1.63e4·4-s − 7.81e4·5-s + 8.23e5·7-s + 1.14e7·9-s − 3.73e7·11-s − 6.60e7·12-s − 6.52e7·13-s + 3.14e8·15-s + 2.68e8·16-s − 6.26e8·17-s − 1.28e9·20-s − 3.31e9·21-s + 6.10e9·25-s − 2.69e10·27-s + 1.34e10·28-s − 9.77e9·29-s + 1.50e11·33-s − 6.43e10·35-s + 1.87e11·36-s + 2.63e11·39-s − 6.12e11·44-s − 8.95e11·45-s + 7.19e11·47-s − 1.08e12·48-s + 6.78e11·49-s + 2.52e12·51-s + ⋯
L(s)  = 1  − 1.84·3-s + 4-s − 5-s + 7-s + 2.39·9-s − 1.91·11-s − 1.84·12-s − 1.04·13-s + 1.84·15-s + 16-s − 1.52·17-s − 20-s − 1.84·21-s + 25-s − 2.57·27-s + 28-s − 0.566·29-s + 3.53·33-s − 35-s + 2.39·36-s + 1.91·39-s − 1.91·44-s − 2.39·45-s + 1.41·47-s − 1.84·48-s + 49-s + 2.81·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(43.5151\)
Root analytic conductor: \(6.59660\)
Motivic weight: \(14\)
Rational: yes
Arithmetic: yes
Character: $\chi_{35} (34, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :7),\ 1)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(0.6742262541\)
\(L(\frac12)\) \(\approx\) \(0.6742262541\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + p^{7} T \)
7 \( 1 - p^{7} T \)
good2 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
3 \( 1 + 4031 T + p^{14} T^{2} \)
11 \( 1 + 37379173 T + p^{14} T^{2} \)
13 \( 1 + 65279611 T + p^{14} T^{2} \)
17 \( 1 + 626193259 T + p^{14} T^{2} \)
19 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
23 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
29 \( 1 + 9775649497 T + p^{14} T^{2} \)
31 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
37 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
41 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
43 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
47 \( 1 - 719081600801 T + p^{14} T^{2} \)
53 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
59 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
61 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
67 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
71 \( 1 + 1790558995678 T + p^{14} T^{2} \)
73 \( 1 - 22033597628414 T + p^{14} T^{2} \)
79 \( 1 + 27088287440917 T + p^{14} T^{2} \)
83 \( 1 - 33726754263974 T + p^{14} T^{2} \)
89 \( ( 1 - p^{7} T )( 1 + p^{7} T ) \)
97 \( 1 - 24587561871581 T + p^{14} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81367176693419316662452803125, −11.88708725905447863941086974382, −11.04132752258761870335179903948, −10.53337629463755670452170611552, −7.79593889223060756328125098792, −7.00571198815224154946053697200, −5.46090950274735549694275136357, −4.57422691880178032150636073767, −2.22167805915023482748799310195, −0.49700816852481171872775415272, 0.49700816852481171872775415272, 2.22167805915023482748799310195, 4.57422691880178032150636073767, 5.46090950274735549694275136357, 7.00571198815224154946053697200, 7.79593889223060756328125098792, 10.53337629463755670452170611552, 11.04132752258761870335179903948, 11.88708725905447863941086974382, 12.81367176693419316662452803125

Graph of the $Z$-function along the critical line