Properties

Label 2-35-35.3-c9-0-15
Degree $2$
Conductor $35$
Sign $0.903 + 0.427i$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−39.0 − 10.4i)2-s + (−2.23 − 8.35i)3-s + (968. + 559. i)4-s + (42.9 − 1.39e3i)5-s + 349. i·6-s + (6.35e3 − 99.7i)7-s + (−1.73e4 − 1.73e4i)8-s + (1.69e4 − 9.80e3i)9-s + (−1.62e4 + 5.40e4i)10-s + (−3.65e4 + 6.33e4i)11-s + (2.50e3 − 9.34e3i)12-s + (−8.32e4 + 8.32e4i)13-s + (−2.48e5 − 6.24e4i)14-s + (−1.17e4 + 2.76e3i)15-s + (2.08e5 + 3.60e5i)16-s + (2.04e5 − 5.46e4i)17-s + ⋯
L(s)  = 1  + (−1.72 − 0.461i)2-s + (−0.0159 − 0.0595i)3-s + (1.89 + 1.09i)4-s + (0.0307 − 0.999i)5-s + 0.110i·6-s + (0.999 − 0.0157i)7-s + (−1.49 − 1.49i)8-s + (0.862 − 0.498i)9-s + (−0.514 + 1.70i)10-s + (−0.753 + 1.30i)11-s + (0.0348 − 0.130i)12-s + (−0.808 + 0.808i)13-s + (−1.73 − 0.434i)14-s + (−0.0600 + 0.0141i)15-s + (0.794 + 1.37i)16-s + (0.592 − 0.158i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.903 + 0.427i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.903 + 0.427i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $0.903 + 0.427i$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{35} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ 0.903 + 0.427i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.888966 - 0.199657i\)
\(L(\frac12)\) \(\approx\) \(0.888966 - 0.199657i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-42.9 + 1.39e3i)T \)
7 \( 1 + (-6.35e3 + 99.7i)T \)
good2 \( 1 + (39.0 + 10.4i)T + (443. + 256i)T^{2} \)
3 \( 1 + (2.23 + 8.35i)T + (-1.70e4 + 9.84e3i)T^{2} \)
11 \( 1 + (3.65e4 - 6.33e4i)T + (-1.17e9 - 2.04e9i)T^{2} \)
13 \( 1 + (8.32e4 - 8.32e4i)T - 1.06e10iT^{2} \)
17 \( 1 + (-2.04e5 + 5.46e4i)T + (1.02e11 - 5.92e10i)T^{2} \)
19 \( 1 + (-4.70e5 - 8.14e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-5.14e5 + 1.91e6i)T + (-1.55e12 - 9.00e11i)T^{2} \)
29 \( 1 - 3.47e6iT - 1.45e13T^{2} \)
31 \( 1 + (-1.49e6 - 8.64e5i)T + (1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (-1.43e7 - 3.84e6i)T + (1.12e14 + 6.49e13i)T^{2} \)
41 \( 1 - 1.48e7iT - 3.27e14T^{2} \)
43 \( 1 + (-1.16e7 - 1.16e7i)T + 5.02e14iT^{2} \)
47 \( 1 + (-1.43e7 + 5.36e7i)T + (-9.69e14 - 5.59e14i)T^{2} \)
53 \( 1 + (-2.53e6 + 6.79e5i)T + (2.85e15 - 1.64e15i)T^{2} \)
59 \( 1 + (-2.62e7 + 4.54e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (2.12e7 - 1.22e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-1.15e7 - 4.32e7i)T + (-2.35e16 + 1.36e16i)T^{2} \)
71 \( 1 - 1.14e8T + 4.58e16T^{2} \)
73 \( 1 + (6.20e6 + 2.31e7i)T + (-5.09e16 + 2.94e16i)T^{2} \)
79 \( 1 + (-1.54e8 + 8.89e7i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + (-1.56e8 + 1.56e8i)T - 1.86e17iT^{2} \)
89 \( 1 + (1.36e8 + 2.35e8i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (3.93e8 + 3.93e8i)T + 7.60e17iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74820801600234224131435318615, −12.52799191305015238052290030038, −11.90509778880590793159259906065, −10.22872305153090421913824789229, −9.490182804608087771951441033949, −8.140994225313820467013568462293, −7.24664767473874015041007231865, −4.69467890257363859738127053103, −1.99727736082270085274967553610, −1.00940024881734890118198504247, 0.812894806976958046676950981351, 2.55467755798179232815678328169, 5.58384166032363074569927315125, 7.41769777269863318763545372741, 7.86394743929467218023027159505, 9.561241990747825124609549323207, 10.66887606997572513979636768133, 11.32017961382576745495379669788, 13.69273870961245565144247270517, 15.19788526713943095273062666783

Graph of the $Z$-function along the critical line