Properties

Label 2-35-35.3-c9-0-14
Degree $2$
Conductor $35$
Sign $0.332 + 0.942i$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−22.3 − 5.98i)2-s + (−10.0 − 37.4i)3-s + (20.3 + 11.7i)4-s + (−924. + 1.04e3i)5-s + 896. i·6-s + (−6.33e3 − 518. i)7-s + (7.99e3 + 7.99e3i)8-s + (1.57e4 − 9.09e3i)9-s + (2.69e4 − 1.78e4i)10-s + (−3.04e4 + 5.27e4i)11-s + (235. − 878. i)12-s + (−1.17e5 + 1.17e5i)13-s + (1.38e5 + 4.95e4i)14-s + (4.84e4 + 2.40e4i)15-s + (−1.36e5 − 2.36e5i)16-s + (3.15e5 − 8.45e4i)17-s + ⋯
L(s)  = 1  + (−0.987 − 0.264i)2-s + (−0.0714 − 0.266i)3-s + (0.0397 + 0.0229i)4-s + (−0.661 + 0.749i)5-s + 0.282i·6-s + (−0.996 − 0.0816i)7-s + (0.689 + 0.689i)8-s + (0.799 − 0.461i)9-s + (0.851 − 0.565i)10-s + (−0.627 + 1.08i)11-s + (0.00327 − 0.0122i)12-s + (−1.13 + 1.13i)13-s + (0.962 + 0.344i)14-s + (0.247 + 0.122i)15-s + (−0.521 − 0.903i)16-s + (0.916 − 0.245i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 + 0.942i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.332 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $0.332 + 0.942i$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{35} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ 0.332 + 0.942i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.364565 - 0.257901i\)
\(L(\frac12)\) \(\approx\) \(0.364565 - 0.257901i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (924. - 1.04e3i)T \)
7 \( 1 + (6.33e3 + 518. i)T \)
good2 \( 1 + (22.3 + 5.98i)T + (443. + 256i)T^{2} \)
3 \( 1 + (10.0 + 37.4i)T + (-1.70e4 + 9.84e3i)T^{2} \)
11 \( 1 + (3.04e4 - 5.27e4i)T + (-1.17e9 - 2.04e9i)T^{2} \)
13 \( 1 + (1.17e5 - 1.17e5i)T - 1.06e10iT^{2} \)
17 \( 1 + (-3.15e5 + 8.45e4i)T + (1.02e11 - 5.92e10i)T^{2} \)
19 \( 1 + (1.44e5 + 2.50e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-1.43e5 + 5.36e5i)T + (-1.55e12 - 9.00e11i)T^{2} \)
29 \( 1 + 5.36e6iT - 1.45e13T^{2} \)
31 \( 1 + (8.85e5 + 5.11e5i)T + (1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (-1.12e7 - 3.01e6i)T + (1.12e14 + 6.49e13i)T^{2} \)
41 \( 1 + 2.35e6iT - 3.27e14T^{2} \)
43 \( 1 + (9.45e6 + 9.45e6i)T + 5.02e14iT^{2} \)
47 \( 1 + (1.13e7 - 4.23e7i)T + (-9.69e14 - 5.59e14i)T^{2} \)
53 \( 1 + (-5.23e6 + 1.40e6i)T + (2.85e15 - 1.64e15i)T^{2} \)
59 \( 1 + (-4.55e7 + 7.89e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-1.10e8 + 6.35e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-5.87e7 - 2.19e8i)T + (-2.35e16 + 1.36e16i)T^{2} \)
71 \( 1 + 3.71e7T + 4.58e16T^{2} \)
73 \( 1 + (-2.94e7 - 1.10e8i)T + (-5.09e16 + 2.94e16i)T^{2} \)
79 \( 1 + (-4.88e8 + 2.81e8i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + (1.58e8 - 1.58e8i)T - 1.86e17iT^{2} \)
89 \( 1 + (2.79e8 + 4.84e8i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (9.93e8 + 9.93e8i)T + 7.60e17iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41472261222444179544515541339, −12.83417644994299313348605887165, −11.68301408307427502346913691314, −10.07651337233002037762429415933, −9.611433166407246689539846244637, −7.67344301628431822113693325822, −6.83124666550775087731819219597, −4.38967316318893323258489349678, −2.34566163382706335305423406490, −0.37376083403851234900076164213, 0.77639885310964523913146064085, 3.52981170345553432496110529131, 5.24957184100679231134680905780, 7.40161080647003523818382610406, 8.306870704891858104404816687778, 9.654358891404213926912269466408, 10.53595689971844415099168644859, 12.53161583201534580395353206740, 13.19810286739639736998129329987, 15.28155842020940803960910428775

Graph of the $Z$-function along the critical line