Properties

Label 2-35-35.3-c9-0-12
Degree $2$
Conductor $35$
Sign $0.485 - 0.874i$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−6.05 − 1.62i)2-s + (21.6 + 80.8i)3-s + (−409. − 236. i)4-s + (1.39e3 + 125. i)5-s − 524. i·6-s + (−6.35e3 + 63.6i)7-s + (4.36e3 + 4.36e3i)8-s + (1.09e4 − 6.33e3i)9-s + (−8.22e3 − 3.02e3i)10-s + (1.57e4 − 2.72e4i)11-s + (1.02e4 − 3.82e4i)12-s + (−5.19e4 + 5.19e4i)13-s + (3.85e4 + 9.92e3i)14-s + (1.99e4 + 1.15e5i)15-s + (1.01e5 + 1.76e5i)16-s + (−1.45e4 + 3.89e3i)17-s + ⋯
L(s)  = 1  + (−0.267 − 0.0717i)2-s + (0.154 + 0.576i)3-s + (−0.799 − 0.461i)4-s + (0.995 + 0.0901i)5-s − 0.165i·6-s + (−0.999 + 0.0100i)7-s + (0.376 + 0.376i)8-s + (0.557 − 0.322i)9-s + (−0.260 − 0.0955i)10-s + (0.324 − 0.561i)11-s + (0.142 − 0.531i)12-s + (−0.504 + 0.504i)13-s + (0.268 + 0.0690i)14-s + (0.101 + 0.587i)15-s + (0.387 + 0.671i)16-s + (−0.0422 + 0.0113i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $0.485 - 0.874i$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{35} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ 0.485 - 0.874i)\)

Particular Values

\(L(5)\) \(\approx\) \(1.25084 + 0.736018i\)
\(L(\frac12)\) \(\approx\) \(1.25084 + 0.736018i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1.39e3 - 125. i)T \)
7 \( 1 + (6.35e3 - 63.6i)T \)
good2 \( 1 + (6.05 + 1.62i)T + (443. + 256i)T^{2} \)
3 \( 1 + (-21.6 - 80.8i)T + (-1.70e4 + 9.84e3i)T^{2} \)
11 \( 1 + (-1.57e4 + 2.72e4i)T + (-1.17e9 - 2.04e9i)T^{2} \)
13 \( 1 + (5.19e4 - 5.19e4i)T - 1.06e10iT^{2} \)
17 \( 1 + (1.45e4 - 3.89e3i)T + (1.02e11 - 5.92e10i)T^{2} \)
19 \( 1 + (-3.91e5 - 6.78e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (1.58e5 - 5.90e5i)T + (-1.55e12 - 9.00e11i)T^{2} \)
29 \( 1 - 7.28e6iT - 1.45e13T^{2} \)
31 \( 1 + (-8.04e6 - 4.64e6i)T + (1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (3.86e6 + 1.03e6i)T + (1.12e14 + 6.49e13i)T^{2} \)
41 \( 1 - 4.95e6iT - 3.27e14T^{2} \)
43 \( 1 + (9.30e6 + 9.30e6i)T + 5.02e14iT^{2} \)
47 \( 1 + (-1.15e7 + 4.32e7i)T + (-9.69e14 - 5.59e14i)T^{2} \)
53 \( 1 + (7.99e7 - 2.14e7i)T + (2.85e15 - 1.64e15i)T^{2} \)
59 \( 1 + (-5.95e7 + 1.03e8i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (8.24e7 - 4.75e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-3.52e7 - 1.31e8i)T + (-2.35e16 + 1.36e16i)T^{2} \)
71 \( 1 - 2.95e8T + 4.58e16T^{2} \)
73 \( 1 + (-4.67e7 - 1.74e8i)T + (-5.09e16 + 2.94e16i)T^{2} \)
79 \( 1 + (3.03e7 - 1.75e7i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + (-2.43e8 + 2.43e8i)T - 1.86e17iT^{2} \)
89 \( 1 + (3.20e7 + 5.54e7i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (-9.43e8 - 9.43e8i)T + 7.60e17iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50366106309083179403744430436, −13.73226501772692207975958392122, −12.47401861172058724723852168473, −10.36472402403938011125177779410, −9.737972881327488442103383811122, −8.880891487087139570115561360574, −6.60222716326240307429592132131, −5.18473891716064710284087426512, −3.50174226278910780219386566564, −1.28880342964991497515609529538, 0.69311909742937523053756525893, 2.59534826209516815224144722056, 4.64038002286109224802390106642, 6.49700586586364926300014852057, 7.78979462978875501582051125495, 9.407608750049787222999946540060, 10.01532189639176545304233149491, 12.33687335376155111280368581250, 13.22312174233437805100759954238, 13.81342565121451274240792796586

Graph of the $Z$-function along the critical line