Properties

Label 2-35-1.1-c9-0-17
Degree $2$
Conductor $35$
Sign $-1$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 33.3·2-s − 72.5·3-s + 601.·4-s − 625·5-s − 2.42e3·6-s − 2.40e3·7-s + 2.97e3·8-s − 1.44e4·9-s − 2.08e4·10-s − 3.15e4·11-s − 4.36e4·12-s + 6.70e4·13-s − 8.01e4·14-s + 4.53e4·15-s − 2.08e5·16-s − 2.21e5·17-s − 4.80e5·18-s − 6.31e5·19-s − 3.75e5·20-s + 1.74e5·21-s − 1.05e6·22-s + 2.90e5·23-s − 2.16e5·24-s + 3.90e5·25-s + 2.23e6·26-s + 2.47e6·27-s − 1.44e6·28-s + ⋯
L(s)  = 1  + 1.47·2-s − 0.517·3-s + 1.17·4-s − 0.447·5-s − 0.763·6-s − 0.377·7-s + 0.257·8-s − 0.732·9-s − 0.659·10-s − 0.650·11-s − 0.607·12-s + 0.651·13-s − 0.557·14-s + 0.231·15-s − 0.795·16-s − 0.643·17-s − 1.07·18-s − 1.11·19-s − 0.525·20-s + 0.195·21-s − 0.958·22-s + 0.216·23-s − 0.133·24-s + 0.200·25-s + 0.959·26-s + 0.896·27-s − 0.443·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 - 33.3T + 512T^{2} \)
3 \( 1 + 72.5T + 1.96e4T^{2} \)
11 \( 1 + 3.15e4T + 2.35e9T^{2} \)
13 \( 1 - 6.70e4T + 1.06e10T^{2} \)
17 \( 1 + 2.21e5T + 1.18e11T^{2} \)
19 \( 1 + 6.31e5T + 3.22e11T^{2} \)
23 \( 1 - 2.90e5T + 1.80e12T^{2} \)
29 \( 1 + 2.34e6T + 1.45e13T^{2} \)
31 \( 1 - 6.68e6T + 2.64e13T^{2} \)
37 \( 1 + 4.33e6T + 1.29e14T^{2} \)
41 \( 1 - 1.29e7T + 3.27e14T^{2} \)
43 \( 1 + 3.85e7T + 5.02e14T^{2} \)
47 \( 1 - 5.63e7T + 1.11e15T^{2} \)
53 \( 1 - 4.95e7T + 3.29e15T^{2} \)
59 \( 1 + 1.21e7T + 8.66e15T^{2} \)
61 \( 1 + 6.35e7T + 1.16e16T^{2} \)
67 \( 1 - 1.35e8T + 2.72e16T^{2} \)
71 \( 1 + 8.05e7T + 4.58e16T^{2} \)
73 \( 1 - 2.43e6T + 5.88e16T^{2} \)
79 \( 1 + 5.06e8T + 1.19e17T^{2} \)
83 \( 1 + 5.73e8T + 1.86e17T^{2} \)
89 \( 1 + 5.34e8T + 3.50e17T^{2} \)
97 \( 1 + 1.27e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74341137301095514107909051078, −12.81341801636368429012462386252, −11.72884832118828843953356698347, −10.74914591814373053145302327545, −8.605145728505840786365675670757, −6.64205589479034813623097794753, −5.55900142306365682560529695878, −4.21025071740809617332742080535, −2.75944182268194186078664262244, 0, 2.75944182268194186078664262244, 4.21025071740809617332742080535, 5.55900142306365682560529695878, 6.64205589479034813623097794753, 8.605145728505840786365675670757, 10.74914591814373053145302327545, 11.72884832118828843953356698347, 12.81341801636368429012462386252, 13.74341137301095514107909051078

Graph of the $Z$-function along the critical line