Properties

Label 2-35-1.1-c5-0-5
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $5.61343$
Root an. cond. $2.36926$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.92·2-s + 0.133·3-s + 66.4·4-s + 25·5-s + 1.32·6-s − 49·7-s + 342.·8-s − 242.·9-s + 248.·10-s + 674.·11-s + 8.87·12-s − 770.·13-s − 486.·14-s + 3.33·15-s + 1.26e3·16-s − 693.·17-s − 2.41e3·18-s − 1.39e3·19-s + 1.66e3·20-s − 6.53·21-s + 6.69e3·22-s + 1.32e3·23-s + 45.6·24-s + 625·25-s − 7.64e3·26-s − 64.8·27-s − 3.25e3·28-s + ⋯
L(s)  = 1  + 1.75·2-s + 0.00855·3-s + 2.07·4-s + 0.447·5-s + 0.0150·6-s − 0.377·7-s + 1.89·8-s − 0.999·9-s + 0.784·10-s + 1.68·11-s + 0.0177·12-s − 1.26·13-s − 0.663·14-s + 0.00382·15-s + 1.23·16-s − 0.582·17-s − 1.75·18-s − 0.884·19-s + 0.929·20-s − 0.00323·21-s + 2.94·22-s + 0.521·23-s + 0.0161·24-s + 0.200·25-s − 2.21·26-s − 0.0171·27-s − 0.785·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(5.61343\)
Root analytic conductor: \(2.36926\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.885128296\)
\(L(\frac12)\) \(\approx\) \(3.885128296\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
7 \( 1 + 49T \)
good2 \( 1 - 9.92T + 32T^{2} \)
3 \( 1 - 0.133T + 243T^{2} \)
11 \( 1 - 674.T + 1.61e5T^{2} \)
13 \( 1 + 770.T + 3.71e5T^{2} \)
17 \( 1 + 693.T + 1.41e6T^{2} \)
19 \( 1 + 1.39e3T + 2.47e6T^{2} \)
23 \( 1 - 1.32e3T + 6.43e6T^{2} \)
29 \( 1 - 172.T + 2.05e7T^{2} \)
31 \( 1 + 4.69e3T + 2.86e7T^{2} \)
37 \( 1 - 1.32e4T + 6.93e7T^{2} \)
41 \( 1 - 2.07e4T + 1.15e8T^{2} \)
43 \( 1 + 8.54e3T + 1.47e8T^{2} \)
47 \( 1 - 1.37e4T + 2.29e8T^{2} \)
53 \( 1 - 6.72e3T + 4.18e8T^{2} \)
59 \( 1 - 3.85e4T + 7.14e8T^{2} \)
61 \( 1 - 7.67e3T + 8.44e8T^{2} \)
67 \( 1 + 4.90e4T + 1.35e9T^{2} \)
71 \( 1 - 2.27e4T + 1.80e9T^{2} \)
73 \( 1 + 2.28e4T + 2.07e9T^{2} \)
79 \( 1 - 2.01e4T + 3.07e9T^{2} \)
83 \( 1 + 1.08e5T + 3.93e9T^{2} \)
89 \( 1 + 3.66e4T + 5.58e9T^{2} \)
97 \( 1 - 1.47e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78288737876691218861002040676, −14.48243282232056185854499427606, −13.19343360617685619838370965677, −12.15296192092692054900487640883, −11.13652586726635921134251282059, −9.224983301120144057037065089776, −6.85665198503451830697754763124, −5.79364497774359238453080092302, −4.22354078797919766698321345583, −2.53819572753356240530969027156, 2.53819572753356240530969027156, 4.22354078797919766698321345583, 5.79364497774359238453080092302, 6.85665198503451830697754763124, 9.224983301120144057037065089776, 11.13652586726635921134251282059, 12.15296192092692054900487640883, 13.19343360617685619838370965677, 14.48243282232056185854499427606, 14.78288737876691218861002040676

Graph of the $Z$-function along the critical line