Properties

Label 2-35-1.1-c5-0-3
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $5.61343$
Root an. cond. $2.36926$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.3·2-s + 27.9·3-s + 75.8·4-s − 25·5-s − 290.·6-s + 49·7-s − 455.·8-s + 537.·9-s + 259.·10-s − 132.·11-s + 2.12e3·12-s + 802.·13-s − 508.·14-s − 698.·15-s + 2.30e3·16-s + 763.·17-s − 5.58e3·18-s − 61.2·19-s − 1.89e3·20-s + 1.36e3·21-s + 1.37e3·22-s + 3.58e3·23-s − 1.27e4·24-s + 625·25-s − 8.33e3·26-s + 8.23e3·27-s + 3.71e3·28-s + ⋯
L(s)  = 1  − 1.83·2-s + 1.79·3-s + 2.37·4-s − 0.447·5-s − 3.29·6-s + 0.377·7-s − 2.51·8-s + 2.21·9-s + 0.821·10-s − 0.330·11-s + 4.25·12-s + 1.31·13-s − 0.693·14-s − 0.801·15-s + 2.25·16-s + 0.640·17-s − 4.06·18-s − 0.0389·19-s − 1.06·20-s + 0.677·21-s + 0.606·22-s + 1.41·23-s − 4.51·24-s + 0.200·25-s − 2.41·26-s + 2.17·27-s + 0.896·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(5.61343\)
Root analytic conductor: \(2.36926\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.251279783\)
\(L(\frac12)\) \(\approx\) \(1.251279783\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
7 \( 1 - 49T \)
good2 \( 1 + 10.3T + 32T^{2} \)
3 \( 1 - 27.9T + 243T^{2} \)
11 \( 1 + 132.T + 1.61e5T^{2} \)
13 \( 1 - 802.T + 3.71e5T^{2} \)
17 \( 1 - 763.T + 1.41e6T^{2} \)
19 \( 1 + 61.2T + 2.47e6T^{2} \)
23 \( 1 - 3.58e3T + 6.43e6T^{2} \)
29 \( 1 + 4.59e3T + 2.05e7T^{2} \)
31 \( 1 + 384.T + 2.86e7T^{2} \)
37 \( 1 - 5.37e3T + 6.93e7T^{2} \)
41 \( 1 + 2.05e4T + 1.15e8T^{2} \)
43 \( 1 + 1.21e4T + 1.47e8T^{2} \)
47 \( 1 + 1.52e4T + 2.29e8T^{2} \)
53 \( 1 - 1.36e3T + 4.18e8T^{2} \)
59 \( 1 - 2.77e4T + 7.14e8T^{2} \)
61 \( 1 + 1.57e4T + 8.44e8T^{2} \)
67 \( 1 + 1.68e4T + 1.35e9T^{2} \)
71 \( 1 - 3.79e4T + 1.80e9T^{2} \)
73 \( 1 + 4.88e4T + 2.07e9T^{2} \)
79 \( 1 + 6.65e4T + 3.07e9T^{2} \)
83 \( 1 + 6.33e4T + 3.93e9T^{2} \)
89 \( 1 + 6.91e4T + 5.58e9T^{2} \)
97 \( 1 + 5.56e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.57887555508836072603751230651, −14.81768849348012148162454530224, −13.21079023549181287334414907098, −11.28966154749385903590000620552, −9.999171450478228112567988881366, −8.797476269090148059454076248012, −8.196252933971707704212009836238, −7.14063555233709744784124230755, −3.22037114632486168490624076771, −1.50248395223322097181713024545, 1.50248395223322097181713024545, 3.22037114632486168490624076771, 7.14063555233709744784124230755, 8.196252933971707704212009836238, 8.797476269090148059454076248012, 9.999171450478228112567988881366, 11.28966154749385903590000620552, 13.21079023549181287334414907098, 14.81768849348012148162454530224, 15.57887555508836072603751230651

Graph of the $Z$-function along the critical line