Properties

Label 2-35-1.1-c5-0-1
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $5.61343$
Root an. cond. $2.36926$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.53·2-s − 15.7·3-s − 11.4·4-s − 25·5-s + 71.2·6-s + 49·7-s + 196.·8-s + 4.27·9-s + 113.·10-s + 126.·11-s + 180.·12-s + 833.·13-s − 222.·14-s + 393.·15-s − 526.·16-s + 157.·17-s − 19.3·18-s − 1.00e3·19-s + 286.·20-s − 770.·21-s − 572.·22-s + 73.5·23-s − 3.09e3·24-s + 625·25-s − 3.77e3·26-s + 3.75e3·27-s − 561.·28-s + ⋯
L(s)  = 1  − 0.801·2-s − 1.00·3-s − 0.357·4-s − 0.447·5-s + 0.808·6-s + 0.377·7-s + 1.08·8-s + 0.0175·9-s + 0.358·10-s + 0.314·11-s + 0.360·12-s + 1.36·13-s − 0.302·14-s + 0.451·15-s − 0.514·16-s + 0.132·17-s − 0.0140·18-s − 0.638·19-s + 0.160·20-s − 0.381·21-s − 0.252·22-s + 0.0289·23-s − 1.09·24-s + 0.200·25-s − 1.09·26-s + 0.991·27-s − 0.135·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(5.61343\)
Root analytic conductor: \(2.36926\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5729627883\)
\(L(\frac12)\) \(\approx\) \(0.5729627883\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
7 \( 1 - 49T \)
good2 \( 1 + 4.53T + 32T^{2} \)
3 \( 1 + 15.7T + 243T^{2} \)
11 \( 1 - 126.T + 1.61e5T^{2} \)
13 \( 1 - 833.T + 3.71e5T^{2} \)
17 \( 1 - 157.T + 1.41e6T^{2} \)
19 \( 1 + 1.00e3T + 2.47e6T^{2} \)
23 \( 1 - 73.5T + 6.43e6T^{2} \)
29 \( 1 + 3.69e3T + 2.05e7T^{2} \)
31 \( 1 - 4.80e3T + 2.86e7T^{2} \)
37 \( 1 - 1.42e4T + 6.93e7T^{2} \)
41 \( 1 - 1.84e4T + 1.15e8T^{2} \)
43 \( 1 - 1.63e4T + 1.47e8T^{2} \)
47 \( 1 + 3.36e3T + 2.29e8T^{2} \)
53 \( 1 + 1.67e4T + 4.18e8T^{2} \)
59 \( 1 + 1.79e4T + 7.14e8T^{2} \)
61 \( 1 - 2.80e4T + 8.44e8T^{2} \)
67 \( 1 + 4.73e4T + 1.35e9T^{2} \)
71 \( 1 + 4.91e4T + 1.80e9T^{2} \)
73 \( 1 - 8.08e4T + 2.07e9T^{2} \)
79 \( 1 + 2.72e4T + 3.07e9T^{2} \)
83 \( 1 + 195.T + 3.93e9T^{2} \)
89 \( 1 - 3.60e3T + 5.58e9T^{2} \)
97 \( 1 - 1.58e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.98927087136655674128275839102, −14.36230972901366394660993735317, −12.94124877014136021941133912820, −11.43076421324612234543409220125, −10.70076278139340885042628623751, −9.065478249107606372137347148100, −7.88318914689567097397983394317, −6.05743112285759524621893863763, −4.34848426983384825448730978396, −0.852884046253631437727049846964, 0.852884046253631437727049846964, 4.34848426983384825448730978396, 6.05743112285759524621893863763, 7.88318914689567097397983394317, 9.065478249107606372137347148100, 10.70076278139340885042628623751, 11.43076421324612234543409220125, 12.94124877014136021941133912820, 14.36230972901366394660993735317, 15.98927087136655674128275839102

Graph of the $Z$-function along the critical line