L(s) = 1 | − i·2-s − 4-s + i·8-s + i·9-s + 2·13-s + 16-s + 18-s − i·25-s − 2i·26-s − i·32-s − i·36-s − i·49-s − 50-s − 2·52-s + 2i·53-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + i·8-s + i·9-s + 2·13-s + 16-s + 18-s − i·25-s − 2i·26-s − i·32-s − i·36-s − i·49-s − 50-s − 2·52-s + 2i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.010881572\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.010881572\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 17 | \( 1 \) |
good | 3 | \( 1 - iT^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 2iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14911886812605344966685252029, −9.042770923072000633582516740499, −8.443073143215756793929554480558, −7.73351118326242519059924752766, −6.34509077012111079513952371251, −5.48307811789978765772994242419, −4.46382693193862481546202965180, −3.63349675825252596942810395588, −2.50896669731885138429607978795, −1.34928060120166883895863755008,
1.20800603005854348550064001621, 3.39118794709560083732820756058, 3.96952724505042743645441889020, 5.21657532887193524305873784777, 6.12474227824019852974080244415, 6.60075638751644783424001245416, 7.61291123898062320768263169986, 8.528243929486229495731371508990, 9.042761878918763567807525692038, 9.828436684303266026564496717583