L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s − 2i·13-s − 1.00·16-s + 1.00·18-s + (0.707 + 0.707i)25-s + (−1.41 − 1.41i)26-s + (−0.707 + 0.707i)32-s + (0.707 − 0.707i)36-s + (−0.707 + 0.707i)49-s + 1.00·50-s − 2.00·52-s + (−1.41 + 1.41i)53-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s − 2i·13-s − 1.00·16-s + 1.00·18-s + (0.707 + 0.707i)25-s + (−1.41 − 1.41i)26-s + (−0.707 + 0.707i)32-s + (0.707 − 0.707i)36-s + (−0.707 + 0.707i)49-s + 1.00·50-s − 2.00·52-s + (−1.41 + 1.41i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.518752281\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.518752281\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09258503253708068252045706764, −9.242018384954255314122508198696, −8.089526149872437346056415071278, −7.32473753966560610280228610445, −6.18874151828348691825630600809, −5.31161014283834064940063943495, −4.66354630754223888740597022685, −3.47817760586934465473963088615, −2.63818819517444431457608271640, −1.27108921017610214870066629693,
1.94000668090253920983587136554, 3.37186842420301803839305182207, 4.27584797284342223247705736725, 4.89797416652445988361001569566, 6.26544091862923101944558774158, 6.68481664619663487812150277937, 7.43770911518328827387415129516, 8.540129327357044549807926270715, 9.188386244521097214075755138820, 10.00903543783694252362392919977