L(s) = 1 | + 2-s + 4-s + 8-s + 9-s − 2·13-s + 16-s + 18-s − 25-s − 2·26-s + 32-s + 36-s + 49-s − 50-s − 2·52-s − 2·53-s + 64-s + 72-s + 81-s − 2·89-s + 98-s − 100-s − 2·101-s − 2·104-s − 2·106-s − 2·117-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s + 9-s − 2·13-s + 16-s + 18-s − 25-s − 2·26-s + 32-s + 36-s + 49-s − 50-s − 2·52-s − 2·53-s + 64-s + 72-s + 81-s − 2·89-s + 98-s − 100-s − 2·101-s − 2·104-s − 2·106-s − 2·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.946331439\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.946331439\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 + T )^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00459735063275287076119707895, −9.509310261511122666221200381479, −7.979954141971087890146568066000, −7.34390078513092637331110970460, −6.68936916288307072353651932438, −5.58480636570868322555035297652, −4.75228434759572436676809041751, −4.05990622505679150187364631673, −2.81987650161538688926266694129, −1.81128345542631433367044257082,
1.81128345542631433367044257082, 2.81987650161538688926266694129, 4.05990622505679150187364631673, 4.75228434759572436676809041751, 5.58480636570868322555035297652, 6.68936916288307072353651932438, 7.34390078513092637331110970460, 7.979954141971087890146568066000, 9.509310261511122666221200381479, 10.00459735063275287076119707895