L(s) = 1 | + 1.41i·5-s − 7-s − 1.41i·11-s − 13-s − 1.41i·17-s − 19-s − 1.41i·23-s − 1.00·25-s − 1.41i·35-s + 37-s − 1.41i·47-s + 2.00·55-s + 1.41i·59-s − 61-s − 1.41i·65-s + ⋯ |
L(s) = 1 | + 1.41i·5-s − 7-s − 1.41i·11-s − 13-s − 1.41i·17-s − 19-s − 1.41i·23-s − 1.00·25-s − 1.41i·35-s + 37-s − 1.41i·47-s + 2.00·55-s + 1.41i·59-s − 61-s − 1.41i·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5831478671\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5831478671\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + 1.41iT - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.41iT - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.646134655813458677582068632251, −7.69657782120303514330329589374, −6.93406280562101360463988895279, −6.47440679853551414278508577157, −5.82955146176077241217108390991, −4.73267427731579002687020529550, −3.68305019835648303843662384563, −2.81391335198223566334849011186, −2.53240608110851098504445717612, −0.33069781107050089668547974991,
1.44508157658753034565196483862, 2.34426137512757194724728187637, 3.66589125921340452212942718224, 4.43934498104254149264951226480, 5.02595662797311093499427230639, 5.96638227411586285224282553694, 6.66804076912655303561602008968, 7.62649973444068756024373245908, 8.152420386851775454725424654418, 9.177907826164004383664034718660