Properties

Label 2-3450-1.1-c1-0-4
Degree $2$
Conductor $3450$
Sign $1$
Analytic cond. $27.5483$
Root an. cond. $5.24865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 5·7-s + 8-s + 9-s − 12-s − 2·13-s − 5·14-s + 16-s − 3·17-s + 18-s + 2·19-s + 5·21-s − 23-s − 24-s − 2·26-s − 27-s − 5·28-s + 3·29-s + 2·31-s + 32-s − 3·34-s + 36-s + 7·37-s + 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.88·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s − 0.554·13-s − 1.33·14-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.458·19-s + 1.09·21-s − 0.208·23-s − 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.944·28-s + 0.557·29-s + 0.359·31-s + 0.176·32-s − 0.514·34-s + 1/6·36-s + 1.15·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(27.5483\)
Root analytic conductor: \(5.24865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3450} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.548929737\)
\(L(\frac12)\) \(\approx\) \(1.548929737\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
23 \( 1 + T \)
good7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.690946808893928521187437984821, −7.45524025254421600856967794267, −6.92553515487321769668775907099, −6.22289040003527569430337196463, −5.75057477662659755547102591322, −4.74332552864596727649359240601, −3.97447672206382845688374442524, −3.09969823459725034754533720693, −2.33576206955171057365724298047, −0.65187739673594516013772594551, 0.65187739673594516013772594551, 2.33576206955171057365724298047, 3.09969823459725034754533720693, 3.97447672206382845688374442524, 4.74332552864596727649359240601, 5.75057477662659755547102591322, 6.22289040003527569430337196463, 6.92553515487321769668775907099, 7.45524025254421600856967794267, 8.690946808893928521187437984821

Graph of the $Z$-function along the critical line