Properties

Label 2-3450-1.1-c1-0-34
Degree $2$
Conductor $3450$
Sign $1$
Analytic cond. $27.5483$
Root an. cond. $5.24865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 5·7-s − 8-s + 9-s + 12-s + 2·13-s − 5·14-s + 16-s + 3·17-s − 18-s + 2·19-s + 5·21-s + 23-s − 24-s − 2·26-s + 27-s + 5·28-s + 3·29-s + 2·31-s − 32-s − 3·34-s + 36-s − 7·37-s − 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.88·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 0.554·13-s − 1.33·14-s + 1/4·16-s + 0.727·17-s − 0.235·18-s + 0.458·19-s + 1.09·21-s + 0.208·23-s − 0.204·24-s − 0.392·26-s + 0.192·27-s + 0.944·28-s + 0.557·29-s + 0.359·31-s − 0.176·32-s − 0.514·34-s + 1/6·36-s − 1.15·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(27.5483\)
Root analytic conductor: \(5.24865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3450} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.397816128\)
\(L(\frac12)\) \(\approx\) \(2.397816128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
23 \( 1 - T \)
good7 \( 1 - 5 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.484432764822453870181838825558, −7.988569059402216159023718766113, −7.47178137338619636518249317333, −6.57489134994079869119762562484, −5.48680380637776083791556572020, −4.83365433318314373328681611170, −3.84655167884441608917042449052, −2.83009973958198060377856174369, −1.76743446498678357862299600272, −1.12049749515858222813471608606, 1.12049749515858222813471608606, 1.76743446498678357862299600272, 2.83009973958198060377856174369, 3.84655167884441608917042449052, 4.83365433318314373328681611170, 5.48680380637776083791556572020, 6.57489134994079869119762562484, 7.47178137338619636518249317333, 7.988569059402216159023718766113, 8.484432764822453870181838825558

Graph of the $Z$-function along the critical line