L(s) = 1 | + (0.896 + 2.04i)5-s − 0.663i·7-s + 1.80·11-s + (−1.99 + 1.15i)13-s + (−3.77 − 2.18i)17-s + (−4.21 + 1.12i)19-s + (1.81 − 1.04i)23-s + (−3.39 + 3.67i)25-s + (−0.974 − 1.68i)29-s − 9.52·31-s + (1.35 − 0.594i)35-s − 2.97i·37-s + (0.247 − 0.428i)41-s + (−6.81 − 3.93i)43-s + (−5.69 + 3.28i)47-s + ⋯ |
L(s) = 1 | + (0.400 + 0.916i)5-s − 0.250i·7-s + 0.545·11-s + (−0.553 + 0.319i)13-s + (−0.915 − 0.528i)17-s + (−0.966 + 0.257i)19-s + (0.378 − 0.218i)23-s + (−0.678 + 0.734i)25-s + (−0.180 − 0.313i)29-s − 1.71·31-s + (0.229 − 0.100i)35-s − 0.489i·37-s + (0.0386 − 0.0669i)41-s + (−1.03 − 0.600i)43-s + (−0.830 + 0.479i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 + 0.354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.935 + 0.354i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.06615795642\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06615795642\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.896 - 2.04i)T \) |
| 19 | \( 1 + (4.21 - 1.12i)T \) |
good | 7 | \( 1 + 0.663iT - 7T^{2} \) |
| 11 | \( 1 - 1.80T + 11T^{2} \) |
| 13 | \( 1 + (1.99 - 1.15i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.77 + 2.18i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.81 + 1.04i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.974 + 1.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.52T + 31T^{2} \) |
| 37 | \( 1 + 2.97iT - 37T^{2} \) |
| 41 | \( 1 + (-0.247 + 0.428i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.81 + 3.93i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.69 - 3.28i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.99 + 1.15i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.88 - 6.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.36 + 9.28i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.96 - 2.29i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.95 + 5.12i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.86 - 2.80i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.99 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.20iT - 83T^{2} \) |
| 89 | \( 1 + (-6.65 - 11.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.80 + 5.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.209326164620696994871310872168, −8.274254957607577062822468478545, −7.26555248602912049058513799255, −6.87242153888181226475879608692, −6.17503271054881070201010752775, −5.27902272305871819342063548302, −4.30945930238195422663756132561, −3.55930711992724070747917384298, −2.49228968314370483766633091571, −1.76671907819412512418112789661,
0.01807700733738754745316277973, 1.50047469841648509281208629909, 2.27562222257575008897705696896, 3.51536811589362415350251206573, 4.45809432254633292685381010892, 5.07294167829593988312165187454, 5.91819501532843653413091478927, 6.60744382298752675382309111507, 7.46722258810176091953647295582, 8.408192431564348040667546563461