L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.793 − 0.608i)3-s + (−0.707 − 0.707i)4-s + (0.866 + 0.5i)5-s + (0.866 − 0.499i)6-s + (0.923 − 0.382i)8-s + (0.258 + 0.965i)9-s + (−0.793 + 0.608i)10-s + (0.258 + 0.448i)11-s + (0.130 + 0.991i)12-s + (0.991 − 1.71i)13-s + (−0.382 − 0.923i)15-s + i·16-s + (−0.991 − 0.130i)18-s − i·19-s + (−0.258 − 0.965i)20-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.793 − 0.608i)3-s + (−0.707 − 0.707i)4-s + (0.866 + 0.5i)5-s + (0.866 − 0.499i)6-s + (0.923 − 0.382i)8-s + (0.258 + 0.965i)9-s + (−0.793 + 0.608i)10-s + (0.258 + 0.448i)11-s + (0.130 + 0.991i)12-s + (0.991 − 1.71i)13-s + (−0.382 − 0.923i)15-s + i·16-s + (−0.991 − 0.130i)18-s − i·19-s + (−0.258 − 0.965i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9219261450\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9219261450\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 - 0.923i)T \) |
| 3 | \( 1 + (0.793 + 0.608i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.258 - 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.991 + 1.71i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 0.261T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - 1.21iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.60 + 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.701170860762236224998961586626, −7.81950963010345008961729888146, −7.25122828766501967466855904397, −6.48295872283209052361044074966, −5.97728312030070540978302283610, −5.36264778710868555148272989409, −4.62684127574454691446098795267, −3.22154806828253850729533739950, −1.93726955066947000298608725772, −0.858214814530002290062295247624,
1.16248061585414017928921311583, 1.91672260156394531810565684934, 3.32568268761597383778669696183, 4.14319895614193824717525663470, 4.70283237072765773262313902702, 5.76534586577587704904245237475, 6.26217829333572546309620305396, 7.25844515727675771086732464966, 8.573077301179989862386435419321, 8.911444092178090579012325007348