Properties

Label 2-342-1.1-c7-0-12
Degree $2$
Conductor $342$
Sign $1$
Analytic cond. $106.835$
Root an. cond. $10.3361$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 64·4-s + 75·5-s − 497·7-s − 512·8-s − 600·10-s + 8.41e3·11-s − 3.75e3·13-s + 3.97e3·14-s + 4.09e3·16-s + 4.40e3·17-s + 6.85e3·19-s + 4.80e3·20-s − 6.72e4·22-s + 5.30e4·23-s − 7.25e4·25-s + 3.00e4·26-s − 3.18e4·28-s − 1.08e4·29-s + 4.63e4·31-s − 3.27e4·32-s − 3.52e4·34-s − 3.72e4·35-s − 4.67e4·37-s − 5.48e4·38-s − 3.84e4·40-s + 1.23e5·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.268·5-s − 0.547·7-s − 0.353·8-s − 0.189·10-s + 1.90·11-s − 0.473·13-s + 0.387·14-s + 1/4·16-s + 0.217·17-s + 0.229·19-s + 0.134·20-s − 1.34·22-s + 0.908·23-s − 0.927·25-s + 0.334·26-s − 0.273·28-s − 0.0822·29-s + 0.279·31-s − 0.176·32-s − 0.153·34-s − 0.146·35-s − 0.151·37-s − 0.162·38-s − 0.0948·40-s + 0.280·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 342 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 342 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(342\)    =    \(2 \cdot 3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(106.835\)
Root analytic conductor: \(10.3361\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 342,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.691855782\)
\(L(\frac12)\) \(\approx\) \(1.691855782\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{3} T \)
3 \( 1 \)
19 \( 1 - p^{3} T \)
good5 \( 1 - 3 p^{2} T + p^{7} T^{2} \)
7 \( 1 + 71 p T + p^{7} T^{2} \)
11 \( 1 - 8411 T + p^{7} T^{2} \)
13 \( 1 + 3750 T + p^{7} T^{2} \)
17 \( 1 - 4409 T + p^{7} T^{2} \)
23 \( 1 - 53036 T + p^{7} T^{2} \)
29 \( 1 + 10806 T + p^{7} T^{2} \)
31 \( 1 - 46386 T + p^{7} T^{2} \)
37 \( 1 + 46736 T + p^{7} T^{2} \)
41 \( 1 - 123680 T + p^{7} T^{2} \)
43 \( 1 - 502779 T + p^{7} T^{2} \)
47 \( 1 - 154445 T + p^{7} T^{2} \)
53 \( 1 - 580534 T + p^{7} T^{2} \)
59 \( 1 - 976 p T + p^{7} T^{2} \)
61 \( 1 + 460705 T + p^{7} T^{2} \)
67 \( 1 - 934320 T + p^{7} T^{2} \)
71 \( 1 - 1853956 T + p^{7} T^{2} \)
73 \( 1 + 5086451 T + p^{7} T^{2} \)
79 \( 1 + 3681080 T + p^{7} T^{2} \)
83 \( 1 + 4452572 T + p^{7} T^{2} \)
89 \( 1 + 5892202 T + p^{7} T^{2} \)
97 \( 1 - 9293630 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02687605366708291506134937520, −9.420158467916015477788835508022, −8.719222973361064392666512639530, −7.41977384331992202511992530568, −6.63598428010608205056133769252, −5.75281778610610477818951448704, −4.21732262326066342937559081395, −3.07840575872137910240405019474, −1.73518890878938070342887352931, −0.71228787586646605225552174984, 0.71228787586646605225552174984, 1.73518890878938070342887352931, 3.07840575872137910240405019474, 4.21732262326066342937559081395, 5.75281778610610477818951448704, 6.63598428010608205056133769252, 7.41977384331992202511992530568, 8.719222973361064392666512639530, 9.420158467916015477788835508022, 10.02687605366708291506134937520

Graph of the $Z$-function along the critical line