L(s) = 1 | + (0.5 − 0.866i)2-s + (−1.5 + 0.866i)3-s + (0.500 + 0.866i)4-s + (−0.5 − 0.866i)5-s + 1.73i·6-s + (2 − 3.46i)7-s + 3·8-s + (1.5 − 2.59i)9-s − 0.999·10-s + (−1.5 − 0.866i)12-s + (−1 − 1.73i)13-s + (−1.99 − 3.46i)14-s + (1.5 + 0.866i)15-s + (0.500 − 0.866i)16-s − 4·17-s + (−1.5 − 2.59i)18-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.866 + 0.499i)3-s + (0.250 + 0.433i)4-s + (−0.223 − 0.387i)5-s + 0.707i·6-s + (0.755 − 1.30i)7-s + 1.06·8-s + (0.5 − 0.866i)9-s − 0.316·10-s + (−0.433 − 0.249i)12-s + (−0.277 − 0.480i)13-s + (−0.534 − 0.925i)14-s + (0.387 + 0.223i)15-s + (0.125 − 0.216i)16-s − 0.970·17-s + (−0.353 − 0.612i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.452307638\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.452307638\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 - 0.866i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2 + 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.5 + 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3T + 37T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 + 5.19i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.5 + 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-3.5 - 6.06i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6 - 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (-9.5 + 16.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10415904465397542913543204554, −8.845751675703985759968870215611, −7.86301902968550665147629319634, −7.17438753673190165301444768888, −6.22012149996149691185417770290, −4.84872332465053519567303589009, −4.36019256832316784900076968449, −3.71017380830295321975015457814, −2.12704371623891776278186790072, −0.64563431816277849755901893368,
1.59487807486734172475132795992, 2.50204123203757374863124919182, 4.57970630690062027615572962378, 4.99273174447983405552720401135, 6.00767223225028104562166575000, 6.59510235598678484096179378227, 7.25668812088417939252798353338, 8.300417556931604842921731301395, 9.093319561592022991417688087591, 10.43948540498682382987905312962